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Abstract: The objective of this paper was to study the phyto-inhibitory and antimicrobial activity
of brown propolis collected from the counties of four regions in Romania. The main physico-
chemical and functional properties of 16 samples of propolis from different landforms of geographical
regions were determined. Their antimicrobial activities were established against 5 bacterial strains
(Pseudomonas fluorescens, Bacillus subtilis, Bacillus cereus, Escherichia coli, and Proteus mirabilis) and
5 fungal strains (Alternaria alternata, Cladosporium cladosporioides, Fusarium oxysporum, Mucor racemosus,
and Aspergillus niger). Simultaneously, the phyto-inhibitory effect of propolis samples on different
cereals was highlighted: hexaploid bread wheat (Triticum aestivum), maize (Zea mays L.), oats (Avena
sativa L.), and barley (Hordeum vulgare L.). Correlations between the antioxidant activity and total
flavonoid and phenol content of the propolis samples were identified, respectively, and the statistical
analysis highlighted that the diameter of the inhibition zone was influenced by the strain type
(bacterial and fungal) and the geographical regions of propolis. Principal component analysis (PCA)
indicated that out of seven principal components, only two exhibited > 0.5. Pearson’s correlation
coefficient showed a low and moderate positive linear relationship between the diameter of the
inhibition zone and the flavonoid and phenol concentration of the propolis samples.

Keywords: propolis; chemical analysis; antibacterial; antifungal; phyto-inhibitory activity; statistics

1. Introduction

Propolis (bee glue) has been known and used since ancient times in traditional folk
medicine [1]. Different biological properties have been attributed to propolis as a preserva-
tive, as a potentially functional product, as an antioxidant, with growth-inhibitory effects,
antimicrobial, anti-inflammatory, antiulcer, wound healing, antitumor, anti-angiogenin,
anti-hyperlipidemic, and immunomodulatory activities [2–10].

Propolis is a natural resinous product collected by honeybees (Apis mellifera L.) from
various plants and then mixed with salivary and enzymatic secretions [11]. It is composed
of resin, wax essential oils, pollen, and organic compounds [12]. In the propolis, more
than 500 compounds have been identified and classified as follows: 50–70% resin and
balsams, 30% wax, 10% essential oils, 5–10% pollen, and 5% other constituents, containing
sugars, minerals, vitamins B, C, and E, cinnamic acid, flavonoids, phenolic acids, and their
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esters [13–15]. Moreover, other chemical components are aldehydes, aromatic compounds,
alcohols and ketones, steroids, coumarins, amino acids, and inorganic compounds [16,17].

The effects and chemical compounds of propolis depend on its type, geographical ori-
gin, plant sources, year, and time of sampling [18]. The composition of propolis is important
when it is used in the food industry, cosmetics, and pharmaceutical industries [19].

The antioxidant and antimicrobial activity of propolis have been studied so far by
using alcoholic or aqueous extracts of this bee product [20]. Phenolic compounds from
propolis are responsible for antioxidant activity. The neutralization of free radicals is
generated also by antioxidants such as vitamin C, flavonoids, and polyphenols from
propolis. The role of antioxidants from propolis is to neutralize the excess of free radicals
with the formation of more stable molecules [21]. In addition, flavonoids and phenolic
acids have good antimicrobial activity [8,22–25].

Ever since 1965, a real “fever” of patents has been observed regarding the use of
propolis. Its use in agriculture, among other fields, was not omitted [26]. Propolis in
agriculture is mainly used to combat phytopathogens in crops. The effect of ethanolic
propolis extract on anthracnose severity, growth, and productivity of Carioca berries was
investigated [27], but there are studies on the use of propolis in the cultivation of tomatoes
(to control tomato bacterial wilt caused by Ralstonia solanacearum), coffee (to control coffee
leaf rust), cucumbers (for the control of powdery mildew by preventive application of a
concentration of 8%.), and grapes (for controlling the growth of Aspergillus flavus) [28–33].
The in vitro and in vivo antifungal activity of Brazilian red propolis against Colletotrichum
musae was also studied as a potential natural alternative for the control of banana crown
rot [34].

Propolis extracts have also been studied for foliar application or soil irrigation on
fava bean plants and their role against nematode infection [35]. The antifungal potential
of propolis alcoholic extracts was investigated on the mycelial growth of Botrytis cinerea
which affects many species of plants, fruits, and vegetables [36].

Taking all these into account, the aim of our study was to determine the physico-
chemical characteristics of several brown propolis samples collected from four regions
of Romania (Banat, Cris, ana, Maramures, , and Transylvania), as well as to evaluate the
antimicrobial activity of these samples against various bacterial and fungal strains that
contaminate cereals and to determine the phyto-inhibitory activity of propolis on some
cereal species. At the same time, correlations between the antioxidant activity and total
flavonoid content of the propolis samples were investigated. In addition, we investigated
whether the antimicrobial activity of the propolis samples was influenced by the type of
strain and the geographical regions of origin.

2. Results
2.1. Physico-Chemical Analysis

At the beginning of the study, the brown propolis samples collected from different
regions of Romania (Banat, Cris, ana, Maramures, , and Transylvania) were characterized
from a physico-chemical point of view. The values of water activity, water solubility, total
phenols, total flavonoids, and the FRAP and DPPH are presented in Table 1.

Table 1. Characterization of brown propolis samples.

Sample
No.

Water
Activity (aw)

Water
Solubility (%)

Phenols
(mg GAE/g)

Flavonoids
(mg QE/g)

FRAP 1

(mmol Fe2+/g)
DPPH 2

(mg GAE/g)

S1 0.71 ± 0.22 9.12 ± 0.27 189.4 ± 5.82 84.31 ± 0.09 1.44 ± 0.31 16.44 ± 0.2
S2 0.74 ± 0.14 12.07 ± 0.31 180.8 ± 4.54 78.26 ± 0.07 1.31 ± 0.01 15.21 ± 0.3
S3 0.69 ± 0.15 8.98 ± 0.66 172.9 ± 3.25 78.55 ± 0.08 0.89 ± 0.02 15.08 ± 0.2
S4 0.73 ± 0.13 14.23 ± 0.49 189.5 ± 4.83 87.84 ± 0.11 2.07 ± 0.08 16.79 ± 0.1
S5 0.74 ± 0.12 11.35 ± 0.57 193.4 ± 7.22 88.06 ± 0.08 1.52 ± 0.02 17.27 ± 0.4
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Table 1. Cont.

Sample
No.

Water
Activity (aw)

Water
Solubility (%)

Phenols
(mg GAE/g)

Flavonoids
(mg QE/g)

FRAP 1

(mmol Fe2+/g)
DPPH 2

(mg GAE/g)

S6 0.71 ± 0.08 13.10 ± 0.72 129.6 ± 3.58 65.59 ± 0.09 0.33 ± 0.09 11.75 ± 0.1
S7 0.73 ± 0.14 9.86 ± 0.14 184.3 ± 6.04 82.27 ± 0.25 1.05 ± 0.03 15.04 ± 0.6
S8 0.62 ± 0.17 8.74 ± 0.50 152.2 ± 6.80 70.10 ± 0.16 1.06 ± 0.06 13.50 ± 0.3
S9 0.67 ± 0.15 13.01 ± 0.34 157.1 ± 5.57 74.35 ± 0.36 1.08 ± 0.14 14.43 ± 0.2

S10 0.66 ± 0.08 10.56 ± 0.68 186.9 ± 6.88 77.33 ± 0.21 1.94 ± 0.07 16.28 ± 0.2
S11 0.72 ± 0.11 15.61 ± 0.63 144.2 ± 5.51 67.41 ± 0.14 0.27 ± 0.01 12.66 ± 0.1
S12 0.65 ± 0.07 11.00 ± 0.19 153.5 ± 4.78 82.38 ± 0.27 0.76 ± 0.05 14.57 ± 0.4
S13 0.74 ± 0.09 9.52 ± 0.27 144.0 ± 2.09 81.09 ± 0.98 1.29 ± 0.06 13.92 ± 0.5
S14 0.69 ± 0.11 15.23 ± 0.71 192.2 ± 1.18 97.65 ± 0.73 2.14 ± 0.09 18.11 ± 0.1
S15 0.68 ± 0.12 13.09 ± 0.28 108.2 ± 4.78 53.72 ± 0.12 0.25 ± 0.03 12.72 ± 0.6
S16 0.70 ± 0.16 14.55 ± 0.67 141.7 ± 2.07 68.15 ± 0.42 0.48 ± 0.04 11.20 ± 0.2

1 FRAP value—expressed as mM conc. of Fe2+, obtained from a dilution of ferrous sulphate solution having an
equivalent antioxidant capacity. 2 DPPH value—expressed as gallic acid equivalent (GAE) having an equivalent
antiradical capacity.

Brown propolis samples from different geographical locations of the Banat, Crisana,
Maramures, , and Transylvania regions recorded a water activity range from 0.62 to 0.74,
where only a few microorganisms can still grow. Propolis water solubility varies between
8.74 and 15.61%, justifying the fact that it is poorly soluble in water.

The total phenolic content of the propolis samples ranged between 108.2 and 193.4 mg
GAE/g, while the flavonoid content was 53.72 and 97.65 mg QE/g. The highest content
of phenols was found in sample S5 (193.4 mg GAE/g) and flavonoids in sample S14
(97.65 mg QE/g), respectively.

The antioxidant capacity values were obtained using two methods: by ferric-reducing
antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging
record values between 0.25 and 2.14 mmol Fe2+/g and 11.2 and 18.11 mg GAE/g, respectively.

2.2. The Phyto-Inhibitory Activity of Propolis

Table 2 shows the average length of plume growth for 13 days in cereal samples:
wheat, maize, barley, and oats treated with different concentrations of aqueous propolis
solutions (APE) for all 16 counties.

Table 2. Average plumule growth lengths in mm for cereal samples treated with propolis for the
16 counties.

Day 1% APE 1 5% APE 10% APE M 2

Wheat
3 19 ± 1 8 ± 1 2 ± 0.5 24 ± 6
5 36 ± 2 24 ± 1 11 ± 1.5 39 ± 4
7 79 ± 3 58 ± 4 23 ± 3 82 ± 5
9 95 ± 5 81 ± 4 41 ± 8 101 ± 7

11 115 ± 7 102 ± 6 52 ± 7 123 ± 9
13 150 ± 8 137 ± 7 64 ± 8 145 ± 17

Maize
3 10 ± 2 3 ± 1 0 ± 0 15 ± 1
5 21 ± 3 6 ± 2 4 ± 1 23 ± 1
7 34 ± 6 20 ± 3 9 ± 3 37 ± 3
9 44 ± 9 31 ± 5 16 ± 3 54 ± 6

11 53 ± 7 42 ± 6 20 ± 5 65 ± 7
13 65 ± 11 58 ± 9 30 ± 8 83 ± 7
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Table 2. Cont.

Day 1% APE 1 5% APE 10% APE M 2

Barley
3 19 ± 1 12 ± 1 2 ± 0 23 ± 4
5 34 ± 2 23 ± 3 17 ± 1 40 ± 6
7 45 ± 5 31 ± 2 24 ± 1 55 ± 9
9 70 ± 4 44 ± 3 52 ± 3 90 ± 7

11 92 ± 8 82 ± 6 69 ± 5 101 ± 8
13 107 ± 13 96 ± 7 83 ± 6 132 ± 11

Oat
3 21 ± 3 9 ± 2 1 ± 0 25 ± 6
5 30 ± 5 18 ± 5 10 ± 1 30 ± 3
7 43 ± 5 28 ± 4 17 ± 2 44 ± 5
9 50 ± 6 42 ± 4 28 ± 2 65 ± 9

11 70 ± 5 51 ± 6 45 ± 4 102 ± 11
13 81 ± 8 62 ± 9 53 ± 7 123 ± 13

1 APE—aqueous propolis extract. 2 M—control sample.

In the case of the seeds, the radicle and the plumule, respectively, are clearly visible to
the naked eye from the first days, especially in the case of the control samples. The slowing
down of plumule growth increases with increasing propolis concentration over time.

In the case of the samples treated with 1% propolis solution, the highest growth of
the plume compared to the control is in the case of wheat: 150 mm/145 mm = 1.034.
The lowest length growth–control ratio is 81 mm/123 mm = 0.658 for oat. The highest
length growth–control ratio for samples treated with 5% propolis solution was for wheat:
137 mm/145 mm = 0.945, and the lowest ratio (62 mm/123 mm = 0.504) for oat. For the
10% propolis solution, the highest length–control ratio was 83 mm/132 mm = 0.629 for
barley, and the lowest ratio was 30 mm/83 mm = 0.361 for barley.

Figure 1a–d show the situation of cereal samples: wheat, maize, barley, and oats
treated with different concentrations of APE after 13 days.

Antibiotics 2023, 12, x FOR PEER REVIEW 4 of 18 
 

3 21 ± 3 9 ± 2 1 ± 0 25 ± 6 
5 30 ± 5 18 ± 5 10 ± 1 30 ± 3 
7 43 ± 5 28 ± 4 17 ± 2 44 ± 5 
9 50 ± 6 42 ± 4 28 ± 2 65 ± 9 
11 70 ± 5 51 ± 6 45 ± 4 102 ± 11 
13 81 ± 8 62 ± 9 53 ± 7 123 ± 13 

1 APE—aqueous propolis extract. 2 M—control sample. 

In the case of the seeds, the radicle and the plumule, respectively, are clearly visible 
to the naked eye from the first days, especially in the case of the control samples. The 
slowing down of plumule growth increases with increasing propolis concentration over 
time. 

In the case of the samples treated with 1% propolis solution, the highest growth of 
the plume compared to the control is in the case of wheat: 150 mm/145 mm = 1.034. The 
lowest length growth–control ratio is 81 mm/123 mm = 0.658 for oat. The highest length 
growth–control ratio for samples treated with 5% propolis solution was for wheat: 137 
mm/145 mm = 0.945, and the lowest ratio (62 mm/123 mm = 0.504) for oat. For the 10% 
propolis solution, the highest length–control ratio was 83 mm/132 mm = 0.629 for barley, 
and the lowest ratio was 30 mm/83 mm = 0.361 for barley. 

Figure 1a–d show the situation of cereal samples: wheat, maize, barley, and oats 
treated with different concentrations of APE after 13 days. 

  
(a) Wheat—after 13 days (b) Maize—after 13 days 

  
(c) Barley—after 13 days (d) Oats—after 13 days 

Figure 1. Cereal samples ((a)—Wheat, (b)—Maize, (c)—Barley, (d)—Oats) treated with different 
concentrations of aqueous propolis solutions (APE) after 13 days, M—control sample.. 

A difference in plume growth is observed between the samples treated with different 
APE concentrations at the end of the 13 days of monitoring for all studied grain samples. 

  

Figure 1. Cereal samples ((a)—Wheat, (b)—Maize, (c)—Barley, (d)—Oats) treated with different
concentrations of aqueous propolis solutions (APE) after 13 days, M—control sample.



Antibiotics 2023, 12, 1015 5 of 17

A difference in plume growth is observed between the samples treated with different
APE concentrations at the end of the 13 days of monitoring for all studied grain samples.

2.3. Antimicrobial Activity of Propolis

Table 3 shows the results of the antibacterial effect of the 16 propolis samples against the
studied strains and the inhibition diameter area for a synthesis of antibiotic–
ciprofloxacin, respectively.

Table 3. Inhibition diameter area (mm) produced by the aqueous propolis extracts (0.1 g/mL) on the
bacterial strains.

Sample No.
Strain

P. fluorescens B. subtilis B. cereus E. coli P. mirabilis

S1 32 28 25 32 29
S2 28 26 27 24 21
S3 30 25 26 21 24
S4 28 24 27 26 28
S5 29 28 28 24 23
S6 32 27 29 28 31
S7 31 29 28 27 29
S8 29 26 27 23 25
S9 27 24 26 25 27
S10 30 27 25 29 26
S11 30 25 27 22 22
S12 28 27 26 29 21
S13 29 26 26 26 27
S14 33 29 29 31 31
S15 27 25 27 18 23
S16 29 23 24 22 19

Ciprofloxacin 24 30 30 29 28

All propolis samples showed antibacterial activity against all types of bacterial strains.
The diameters of the inhibition zones ranged from 18 to 32 mm.

Table 4 shows the results of the antifungal effect of the propolis samples.

Table 4. Inhibition diameter area (mm) produced by the aqueous propolis extracts (0.1 g/mL) on the
fungal strains.

Sample No.
Strain

A. alternata C. cladosporioides F. oxysporum M. racemosus A. niger

S1 25 23 28 27 24
S2 16 20 23 22 21
S3 19 23 24 24 19
S4 21 19 25 24 23
S5 20 21 26 21 26
S6 23 26 23 25 17
S7 26 24 22 28 18
S8 22 19 27 23 16
S9 24 22 21 20 22
S10 16 24 25 22 15
S11 18 18 23 25 19
S12 20 23 26 26 18
S13 21 20 22 26 16
S14 25 25 27 23 25
S15 19 17 23 22 15
S16 17 20 24 22 18

All propolis samples showed antifungal activity against all types of fungal strains.
The diameters of the inhibition zones are smaller than in the case of bacteria, ranging from
15 to 27 mm.
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2.4. Statistical Analysis

Figure 2 shows the correlation between the antioxidant capacity determined by the
DPPH and FRAP methods and the total flavonoid content of the propolis samples.
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DPPH and FRAP methods and the total phenolic content of the propolis samples.
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(GAE)/g) and FRAP (mmol Fe2+/100 g) methods and total phenolic content for the propolis samples.

A first-order multiple linear regression model was used to estimate the relationship be-
tween the grains’ plume growth (y) as a dependent variable, and two independent variables:
time (x1) and the concentration of propolis extract applied as an inhibitor (x2). Variance (σ2),
standard deviation (σ), correlation coefficient (r), and squared correlation coefficients (r2)
were used as indicators of model adequacy. The equations and the concordance indicators
of the determined statistical model are presented in Table 5.

Table 5. Equations and adequacy indicators for the obtained statistical models.

Grain Equation σ2 σ r2 r

Wheat y = 13.688 + 9.383·x1 − 4.836·x2 228.928 15.130 0.896 0.947
Maize y = 7.022 + 4.038·x1 − 2.348·x2 48.808 6.466 0.902 0.950
Barley y = 0.432 + 7.659·x1 − 1.875·x2 68.590 8.280 0.944 0.971

Oat y = 7.770 + 5.164·x1 − 2.212·x2 24.85 4.98 0.958 0.979
The values of the concordance indicators argue for a good capacity to predict statistical models.

Principal component analysis (PCA) was performed. The concentrations of consid-
ering APE—C(1%), C(5%), and C(10%), together with the control sample, were used as
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input data. The analysis was designed to evaluate the phyto-inhibitory effect of the three
aqueous propolis solutions on the four cereal samples after 3, 5, 7, 9, 11, and 13 days.

Principal components (PCs) were determined from the eigenvalues of the correlation
matrix of observations. The eigenvalues were found to be 3.81, 0.14, 0.035, and 0.005, for
PC1 to PC4. As can be seen in Figure 4, the first two PCs explain 98.97% of the total variance.
PC1 explains 95.29% and PC2 explains 3.68%, respectively.
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Figure 5 shows the observations and PCs obtained from the data analyzed. The
formation of two groups of cereal samples was observed. The first blue group, located on
the upper right of the score graph, consists of the oat and barley samples after 9, 11, and
13 days of treatment with propolis solution. The second group marked in green, located at
the bottom right of the score graph, consists of the maize and wheat samples after 9, 11,
and 13 days of treatment with propolis solution. The grain samples marked in red, located
in the center-left part of the score graph, showed a lower response to the propolis solutions
during the first 3–7 days. Consequently, it can be stated that C(1%), C(5%), and C(10%)
values (Figure 6) are useful in clustering the cereal groups. For the cereal group consisting
of oat and barley samples after 9, 11, and 13 days, the variable C(10%) was responsible for
the classification. For the cereal group consisting of maize and wheat samples after 9, 11,
and 13 days, the variables responsible for the classification were C(1%) and C(5%).

The contribution of the variables to PCs is shown in Figure 6. The C(1%) and C(5%)
concentrations of the propolis solutions strongly correlate with PC1 in the positive direction,
while the C(10%) concentration of the propolis solution is strongly correlated with PC2 also
in the positive direction. Consequently, it can be stated that the use of C(1%) and C(5%)
propolis solutions led to good results regarding the phyto-inhibitory effect of maize and
wheat samples after a period of 9 to 11 days, even from 7 days from wheat. The use of
C(10%) propolis solution led to good results regarding the phyto-inhibitory effect of barley
and oat samples after a period of 9–11 days.

A two-way ANOVA test analyzes the simultaneous effect of two independent variables:
propolis extracts from Banat, Cris, ana, Maramures, , and Transylvania regions, Romania, and
the diameter of the inhibition area for the studied strains (bacteria and fungi).

For the 16 samples of brown propolis, the dispersion caused by each variable parameter
will result, including residual dispersion caused by accidental factors (Table 6).
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Table 6. Bifactorial variance analysis for samples from Banat, Cris, ana, Maramures, , and Transylvania
regions, Romania.

Dispersion Sum of the
Diameters of

Inhibition Zones

Quadratic Sum Degrees of
Freedom (ν)

Variance Fcomputed
F0.05Bacteria Fungi Bacteria Fungi Bacteria Fungi

Between propolis extracts 177.25 273.50 15 11.82 18.23 2.82 3.05 1.84
Between strains 258.35 200.69 4 64.59 50.17 15.43 8.40 2.53

Residual 251.15 358.50 60 4.19 5.98 - -

Since Fcomputed for bacteria and fungi are both greater than F0.05, the null hypothesis
that the mean values of the columns and rows are equal was rejected. It was concluded that
the geographical origin of Romanian propolis and the type of strain (bacteria and fungi)
influenced the diameter of the inhibition zone at a significance level α = 0.05.
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In Table 7, the values of Pearson’s correlation coefficient show the strength and direc-
tion of a linear association between the diameter of the inhibition zone and the flavonoid
and phenol content of propolis for all the microbial strains.

Table 7. Pearson’s correlation coefficients between the diameter of the inhibition zone and the
flavonoid and phenol content of propolis samples for the microorganisms studied.

Microbial Strains Flavonoids Phenols

P. fluorescence 0.41 0.34
B. subtilis 0.45 0.47
B. cereus 0.49 0.32

E. coli 0.68 0.54
P. mirabilis 0.34 0.28
A. alternate 0.32 0.19

C. cladosporioides 0.49 0.38
F. oxysporum 0.39 0.44
M. racemosus 0.21 0.05

A. niger 0.64 0.66

3. Discussion

Among all the bee products extracted from the bee colony, the most pronounced
phyto-inhibitory activity is in the case of honey and propolis [37].

The properties and the content of propolis differ considerably from region to region
along with vegetation, from season to season, and from hive to hive [38]. Its composition
varies depending on geographic location, botanical origin, and climatic factors [39].

The physico-chemical parameters showed significant differences in propolis samples
from the different counties of Transylvania. The water activity of the propolis samples varies
between 0.62–0.74 and is not a proper environment for the majority of microorganisms.
The values are similar to those of the studies carried out by Devequi-Nunes et al. [19]. The
propolis samples displayed low water solubility (between 8.74 and 15.61%) according to
the value obtained by Pant et al. [40]. Biologically active substances have low solubility
in water, and the number of phenolic compounds in aqueous extracts is lower than in
ethanolic extracts [41,42].

Some plant materials are being used now to mitigate the devastating effects of abiotic
stresses on plants. Propolis also protects plants against viruses, bacteria, molds, and various
fungi. Propolis contains essential compounds (flavones, sugars, aromatic acids, amino
acids, vitamins, minerals, terpenes, and sesquiterpenes) with an impact on the activity of
various physiological processes in plants [43].

The phyto-inhibitory and phytotoxic activity of propolis extracts is shown in many
studies. For example, the potato tubers kept in the hive did not sprout and after being
kept in the hive for a long time they suffered permanent inhibition. Moreover, the aqueous
extract of propolis was found to be responsible for inhibiting the germination and growth
of lettuce seedlings and rice grains [37]. Derevici et al. compared the inhibitory effect of
aqueous propolis solution from Romania and Russia on the germination of certain seeds
and revealed an inhibitory effect on hemp seeds (Cannabis sativa), which occurred at a
dilution of 1:10 [44]. The presoaking application of propolis and maize grain extracts
alleviates salinity stress in common beans (Phaseolus vulgaris L.) [45]. In finding new natural
products with potential herbicide activity, propolis was studied by King-Díaz et al. [46]
who isolated flavonoid compounds from propolis and tested them on the germination of
Lolium perenne, Echinochloa crus-galli, and Physalis ixocarpa seedlings.

Analyzing the results of our tests regarding the phyto-inhibitory activity of the studied
APE, it can be observed that the cereal species behaved similarly during growth, the phyto-
inhibitory activity of propolis being evident in all four cereal species (Table 2, Figure 1).
It can be also noticed that there is a similarity in terms of growth behavior under the
conditions of administration of phyto-inhibitory agents for the wheat and maize samples
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for the barley and oat samples, respectively. The reduction in growth speed was significant
in the case of the administration of larger amounts of APE (10% solution). For wheat, this
reduction was almost 3 times, and for maize and oats 2–2.5 times. The reduction was less
significant in the case of barley.

Our findings are in accordance with [47] who concluded that the propolis sample
inhibits the germination of wheat seedlings (Triticum durum Desf. cv.Kunduru) with the
increase of its concentration.

The results obtained are in accordance with the research of Dadgostar and Nozari [48]
who tested propolis extracts on the germination of wild barley, oat, and cattle cotton.

Regarding the antimicrobial activity, our study showed that all propolis extracts had
both antibacterial and antifungal effects on all of the analyzed strains, with some samples
having a more pronounced antibacterial effect even than that of the antibiotic used as a
control, in the case of some strains (P. fluorescens, E. coli, P. mirabilis).

Our results confirm the antimicrobial effect of propolis, demonstrated in other studies.
Since the chemical composition of propolis varies considerably depending on the geograph-
ical area, the antibacterial activity of propolis is determined by its origin, the bee species,
and the procedure used to obtain the extract [8]. In the case of bacteria, poplar propolis has
been reported to have antibacterial effects against both Gram-positive and Gram-negative
bacteria [49]. Numerous other studies have found that different types of propolis have
significant antimicrobial activity against a wide range of bacterial pathogens, including
those analyzed in this study [50–52]. In addition, our study confirms our previous results
on the effect of some propolis samples on fungal strains [25], as well as other studies on
Alternaria spp., Fusarium spp., Mucor spp., and Aspergillus spp. [53,54].

Considering that the analyzed propolis samples had a good antimicrobial effect against
strains of bacteria and fungi that are frequently found on cereals, this can be a premise for
the use of propolis as an antibacterial agent for such crops. On the other hand, since the
phyto-inhibitory activity of these propolis samples has been demonstrated, the use of such
products must be conducted with caution in order to not affect plant growth.

The differences regarding the bioactivity of propolis are due to the chemical variations
of its constituents [55,56].

A strong correlation (R2 = 0.74) is observed between the antioxidant activity (DPPH)
and flavonoid content for propolis samples from the four regions of Romania (Banat,
Cris, ana, Maramures, , and Transylvania) (Figure 2). The FRAP assay also showed a moderate
correlation between the two parameters with a correlation coefficient whose magnitude is
0.67. This confirms that flavonoids have antioxidant activity, and almost every group of
flavonoids has the ability to act as antioxidants [57].

The correlation coefficients describe the strength of an association between the antioxi-
dant capacity of propolis samples and their content in phenolic compounds (Figure 3). The
results indicate a strong linear correlation between the RSA of 2,2-diphenyl-1-picrylhydrazyl
and the phenolic compounds. The correlation coefficient (R2 = 0.69) shows a positive mod-
erate correlation between total phenolic compounds and the total antioxidant capacity
measured by ferric-reducing antioxidant power (FRAP).

The use of PCA on the growth lengths of plumes for the studied cereals is suitable for
data reduction and summarization purposes. The first few principal component coordinates
that explain most of the variance can be used as variables in further statistical analysis in
exactly the same way as in standard principal component analysis (Figures 5 and 6). The
principal component analysis allowed the information content of large data tables to be
summarized through a smaller set of “summary indices” that can be more easily visualized
and analyzed.

The Pearson’s correlation coefficients between the diameter of the inhibition zone and
the flavonoid and phenol content (Table 7) indicated that the coefficients 0.21 and 0.05 show
negligible correlations in the case of M. racemosus and low and moderate in the rest of the
cases, indicating a positive linear relationship between the two variables. The correlation
is statically significant in the case of E. coli (Pearson’s correlation coefficient is 0.68 for
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flavonoids and 0.54 for phenols) and A. niger (Pearson’s correlation is 0.64 for flavonoids
and 0.66 for phenols) indicating a better moderate positive linear relationship. On the
whole, the strength of association is smaller in the case of fungi, compared to bacteria,
which presents a slightly higher correlation. The correlations between the diameter of the
inhibition area and the flavonoids are stronger than in the case of phenols.

Our study had certain limitations. On the one hand, this study was performed on
propolis samples only from four regions of Romania, located in the northwestern part of
the country and not from all regions. On the other hand, the number of species of mi-
croorganisms was relatively small, with only five bacterial strains and five fungi, but those
that frequently contaminate cereals were chosen. In future studies, we propose to analyze
other propolis samples from all over the country, to determine the antimicrobial effects on
other pathogenic strains for cereals, to determine the minimum inhibitory concentration,
the minimum bactericidal and fungicidal concentration. We also propose to evaluate the
phyto-inhibitory effect on other plant species that can be harmful to cereal crops.

4. Materials and Methods
4.1. Propolis Samples

Brown propolis samples produced by bees in wooden hives were collected from
16 counties of 4 regions in Romania (Banat, Cris, ana, Maramures, , and Transylvania). The
samples were collected in June–July 2021. Sampling was performed by scraping off the
cover and entering the hives with a stainless-steel spatula. The samples were stored at
−18 ◦C in the darkness until analysis. Table 8 shows the county and the relief related to the
area where the samples were taken.

Table 8. The area and the origin of the propolis samples.

Sample County of Origin Landforms

S1 Alba Mountainous
S2 Arad Plain
S3 Bihor Hilly
S4 Bistrit,a-Năsăud Mountainous
S5 Caras, -Severin Hilly
S6 Cluj Hilly
S7 Hunedoara Sub-mountainous
S8 Maramures, Mountainous
S9 Mures, Hilly

S10 Satu Mare Hilly
S11 Sălaj Sub-mountainous
S12 Sibiu Sub-mountainous
S13 Timis, Plain
S14 Bras, ov Sub-mountainous
S15 Covasna Mountainous
S16 Harghita Mountainous

Figure 7 shows the positioning of Romania on the European map and the counties
from which samples were taken, respectively.

4.2. Physico-Chemical Analysis
4.2.1. Water Activity

The water activity (aw) was determined at 25 ◦C with the Aquaspector apparatus AQS-
2-TC (Nagy Messsysteme GmbH, Gäufelden, Germany). The instrument was calibrated.
The measurements were repeated three times for each sample [58].

4.2.2. Water Solubility

The method described by Cano-Chauca et al. (2005) consisted of dissolving 2 g of
propolis sample in 20 mL distilled water and centrifugation at 5000 rpm for 5 min. The
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aliquot (5 mL) was dried at 105 ◦C in an oven. Solubility was determined as the sample
mass obtained after drying [59].

Antibiotics 2023, 12, x FOR PEER REVIEW 12 of 18 
 

S13 Timiș Plain 
S14 Brașov Sub-mountainous 
S15 Covasna Mountainous 
S16 Harghita Mountainous 

Figure 7 shows the positioning of Romania on the European map and the counties 
from which samples were taken, respectively. 

  

Figure 7. Location of Romania in Europe (A); Map of Romania–Transylvania with propolis sampling 
counties (B). 

4.2. Physico-Chemical Analysis 
4.2.1. Water Activity 

The water activity (aw) was determined at 25 °C with the Aquaspector apparatus 
AQS-2-TC (Nagy Messsysteme GmbH, Gäufelden, Germany). The instrument was cali-
brated. The measurements were repeated three times for each sample [58].  

4.2.2. Water Solubility 
The method described by Cano-Chauca et al. (2005) consisted of dissolving 2 g of 

propolis sample in 20 mL distilled water and centrifugation at 5000 rpm for 5 min. The 
aliquot (5 mL) was dried at 105 °C in an oven. Solubility was determined as the sample 
mass obtained after drying [59].  

4.2.3. Determination of Total Phenolic Content (TPC) 
For the determination of Total Phenolic Content (TPC), the Folin–Ciocalteu method 

was used [60,61]. 0.5 g of propolis and 15 mL of ethanol were homogenized at 500 rpm (30 
min), then filtered and stored in the dark. The same amount of Folin–Ciocalteu reagent 
was added to 500 µL of ethanolic propolis extract. Thereafter, 2 mL of 10% sodium car-
bonate solution and distilled water were added for a final volume of 50 mL. The absorb-
ance at 765 nm was measured with the spectrophotometer (Lambda 20—Perkin Elmer 
UV/VIS, Washington, DC, USA) with distilled water as a control. Total phenol content was 
determined by interpolating the absorbance of the propolis based on a calibration curve 
constructed with standard gallic acid, with a purity of 98%. 

4.2.4. Total Flavonoid Content (TFC) 
For the determination of total flavonoid content, 1 g propolis and 25 mL of 95% eth-

anol were homogenized at 200 rpm (24 h) and then filtered, adjusted to 25 mL with 80% 
ethanol, and stored in the dark place. Diluted standard solutions (0.5 mL) were mixed 

Figure 7. Location of Romania in Europe (A); Map of Romania–Transylvania with propolis sampling
counties (B).

4.2.3. Determination of Total Phenolic Content (TPC)

For the determination of Total Phenolic Content (TPC), the Folin–Ciocalteu method
was used [60,61]. 0.5 g of propolis and 15 mL of ethanol were homogenized at 500 rpm
(30 min), then filtered and stored in the dark. The same amount of Folin–Ciocalteu reagent
was added to 500 µL of ethanolic propolis extract. Thereafter, 2 mL of 10% sodium carbon-
ate solution and distilled water were added for a final volume of 50 mL. The absorbance at
765 nm was measured with the spectrophotometer (Lambda 20—Perkin Elmer UV/VIS,
Washington, DC, USA) with distilled water as a control. Total phenol content was de-
termined by interpolating the absorbance of the propolis based on a calibration curve
constructed with standard gallic acid, with a purity of 98%.

4.2.4. Total Flavonoid Content (TFC)

For the determination of total flavonoid content, 1 g propolis and 25 mL of 95% ethanol
were homogenized at 200 rpm (24 h) and then filtered, adjusted to 25 mL with 80% ethanol,
and stored in the dark place. Diluted standard solutions (0.5 mL) were mixed separately
with 1.5 mL of 95% ethanol, 0.1 mL of AlCl3 10%,0.1 mL of 1M potassium acetate, and
2.8 mL of distilled water. After 30 min in a dark place, the absorbance readings at 415 nm
were determined by spectrophotometer (Lambda 20—Perkin Elmer UV/VIS, Waltham, MA,
USA). The total flavonoid content was established using a standard curve, with quercetin
as the standard. The mean of three readings was used and expressed as mg of quercetin
equivalents (QE)/g of propolis [62].

4.2.5. Ferric-Reducing Antioxidant Power (FRAP)

The ferric-reducing antioxidant assay (FRAP) was performed to highlight the reduc-
ing power of propolis extracts. The FRAP reagent was obtained from 2.5 mL of 10 mM
2,4,6 tripyridyl-S-triazine solution (TPTZ reagent) with 2.5 mL of 20 mM FeCl3·6H2O so-
lution in 25 mL of 300 mM acetate buffer (pH 3.6). Thereafter, 1.5 mL of freshly prepared
FRAP reagent was mixed with 200 µL of methanolic extracts of propolis (1 g in 7 mL
methanol) and incubated at 37 ◦C for 4 min.

The absorbance was recorded at λ = 593 nm after prior calibration of the spectropho-
tometer with 200 µL of distilled water instead of the propolis sample. The standard curve
was created by reacting ferrous sulfate (151.5–9.5 mg/mL) with the FRAP reagent [63,64].



Antibiotics 2023, 12, 1015 13 of 17

4.2.6. The Antioxidant Activity of Propolis

The raw propolis samples were macerated and continuously homogenized for 24 h
in 70% ethanol solution (1:100 w/v), and then evaporated to dryness. A reaction mixture
containing 2,2-diphenyl-1-picrylhydrazyl (DPPH) 0.1 mM ethanoic solution and 0.6 mg/mL
propolis solution was prepared. The absorbance was measured in a quartz cuvette (1 cm3)
at λ = 515 nm with a Lambda 20 UV VIS Spectrophotometer (Perkin Elmer UV/VIS,
Washington, DC, USA). Absorbance (A) was measured at the initiation of the reaction, then
after 10 and 20 min. The antioxidant activity was calculated using the formula [65,66]:
%RSA = (ADPPH − Asample)/ADPPH × 100.

4.3. The Phyto-Inhibitory Activity of Propolis

The phyto-inhibitory activity is based on the estimation of the germination period
(slowing down) of cereal samples with physical-chemical characteristics in standard sys-
tems, with and without the controlled addition of propolis. The global sample was made
by mixing equal amounts of propolis from each county. To evaluate the phyto-inhibitory
activity, aqueous propolis solutions of different concentrations were prepared: 1%, 5%,
and 10%. The cereals used for the study were Hexaploid bread wheat (Triticum aestivum):
moisture 13.8%, hectoliter weight 77.1 kg/hL at 26.5 ◦C; Maize (Zea mays L.): moisture
14.4%, hectoliter weight 73.8 kg/hL at 26.5 ◦C; Oats (Avena sativa L.): moisture of 12.9%,
hectoliter weight of 41.1 kg/hL at 26.4 ◦C; and Barley (Hordeum vulgare L.): moisture 14.2%,
hectoliter weight 63.7% at 26.6 ◦C [67,68].

Aqueous propolis extract (APE) was obtained by the method described in our previous
studies. The aqueous propolis extract was obtained from 50 g of propolis, finely chopped,
using a mortar and pestle, weighed on a Kern ABT120- 5DNM analytical balance (Kern
& Sohn GmbH, Balingen, Germany), to which 250 mL of distilled water was added and
refluxed for 1 h in a round bottom flask with a condenser. The heterogeneous system was
centrifuged (~4500× g) in a centrifuge Centra CL2 (Thermo Fisher Scientific Inc., Waltham,
MA, USA), coarsely filtered through a vacuum-connected filter (Merck KGaA, Darmstadt,
Germany) by centrifugation at ~4000× g, filtered through a low porosity surface connected
to a vacuum, and boiled at 100 ◦C until 20% of the initial quantity remained [69,70].

APE was introduced into Petri dishes (20 cm2) with a layer of hydrophilic wool, using
concentrations of 1% (0.01 g/mL), 5% (0.05 g/mL), and 10% (0.1 g/mL), respectively. The
studied cereals were introduced into the formed medium, and every other day for 13 days,
and statistical evaluations (averages) were performed on 10 sprouted seedlings.

4.4. Antimicrobial Activity of Propolis
4.4.1. Cultures of Microorganisms

In order to evaluate the antibacterial activity of propolis extracts, five strains of bacteria
were used, selected from the main species found on cereals: Pseudomonas fluorescens (ATCC
13525), Bacillus subtilis (ATCC 6633), Bacillus cereus (ATCC 11788), Escherichia coli (ATCC
25922), and Proteus mirabilis (ATCC 7002). Antifungal activity was also evaluated using five
strains of fungi from the species that contaminate cereals in the field, before harvesting:
Alternaria alternata (TX 8025), Cladosporium cladosporioides (derived from ATCC 16022),
Fusarium oxysporum (ATCC 48112), Mucor racemosus (derived from ATCC 42647), and
Aspergillus niger (derived from ATCC 16888). All strains used were provided by Thermo
Fisher Scientific Inc. (Waltham, MA, USA) and MicroBioLogics Inc. (St. Cloud, MN, USA).

In order to obtain bacterial cultures, 3–5 colonies from each bacterial strain were
dispersed in 10 mL of nutrient broth (Mikrobiologie Labor-Technik, Arad, Romania) and
were incubated for 18 ± 2 h, at 37 ± 1 ◦C. To obtain fungal cultures, colonies from each
fungal strain dispersed in 10 mL of nutrient broth were incubated for 72 ± 2 h at 25 ± 1 ◦C.
The turbidity of the cell suspension was measured using a McFarland Densitometer (Mettler
Toledo, Columbus, OH, USA) and adjusted until the turbidity of the suspension was
equivalent to the turbidity of a 0.5 McFarland standard.
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4.4.2. Determination of the Antimicrobial Properties of the Aqueous Propolis
Extracts–Agar Disk Diffusion Method

To test the antimicrobial properties of the APE, a disk diffusion method was used
according to CLSI-recommended procedures [71] by measuring the diameters of the zones
of inhibition produced by microbial strains. The diameter of the inhibition zone is a
semi-quantitative measure of the antimicrobial activity.

For bacterial strains, Mueller–Hinton agar (Merck KGaA, Darmstadt, Germany) was
used as a culture medium, and for the fungal strain, Sabouraud 4% dextrose agar (Merck
KGaA, Darmstadt, Germany) was used. The culture medium was put in Petri dishes with a
depth of ~4 mm and the surface was inoculated by flooding with 1 mL culture, then spread
on the surface. To absorb the inoculum in the agar, the plates were kept for 15 min at 37 ◦C
after inoculation.

From each sample of propolis, 50 µL of APE 0.1 g/mL (obtained as described earlier)
were added to ~6 mm filter paper disc. The discs were deposited sterilely on the surface of
the culture medium and kept for 120 min at 5 ◦C. All discs were applied at approximately
the same distance from the edge of the plate and from each other. The Petri dishes were
incubated for 24 h at 37 ◦C for bacterial growth and 5 days at 25 ± 1 ◦C for fungal
growth. Discs with 5 µg ciprofloxacin (Bio-Rad, Hercules, CA, USA) were used as a positive
control for bacterial growth. The final evaluation of the antimicrobial activity was made by
quantifying (in mm) the diameter of the zones of inhibition obtained, using a DIN 862 ABS
digital caliper (Fuzhou Conic Industrial Co. Ltd., Fuzhou, China). All tests were performed
in triplicate by the same operator and under the same laboratory conditions, the results
being expressed as the average of the three tests (in mm without decimals).

4.5. Statistical Analysis

Analysis of variance (ANOVA) was used to test the main and interaction effects of
the strain type (bacterial and fungal) and the geographical regions of propolis on the
diameter of the inhibition zone. Pearson correlation coefficient measures the strength and
the direction of a linear relationship between the diameter of the inhibition zone and the
flavonoid and phenol content of propolis samples for the microorganisms studied [72].

5. Conclusion

The study characterized propolis samples collected from every county of Transylvania,
Romania, by determining the main chemical components. The samples with the highest
content in phenols and flavonoids are those from Caras, Severin, Bras, ov, and Bistrita-Năsăud
counties. The antioxidant capacity of propolis samples depends on their total phenolic and
flavonoid content.

At the same time, the study highlights the phyto-inhibitory effect of propolis sam-
ples on different cereals: hexaploid bread wheat (Triticum aestivum), maize (Zea mays L.),
oats (Avena sativa L.), and barley (Hordeum vulgare L.). It increases with the increase in
propolis concentration.

The propolis samples present antimicrobial activity against all studied bacterial and
fungal strains. The most sensitive strangers were P. fluorescens among the bacterial strains
frequently found on plants, and F. oxysporum among the fungal species, respectively.

Correlations were found between antioxidant activity and flavonoid and phenol
content of propolis samples. Satisfactory associations were found between the diameter
of the inhibition zone and the content of flavonoids and phenols in propolis for almost all
microbial strains. A correlation between the geographical origin of Romanian propolis, the
type of strain (bacteria and fungi), and the diameter of the inhibition zone was observed in
the study.

The results of the study suggest that aqueous extracts of propolis can be used as an
antimicrobial agent for cereals, however, on the other hand, propolis also has a phyto-
inhibitory effect on these cultures.
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