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Abstract
After the early advent of the Coronavirus Disease 2019 (COVID-19) pandemic, myriads of FDA-approved drugs have been
massively repurposed for COVID-19 treatment based onmolecular docking against selected protein targets that play fundamental
roles in the replication cycle of the novel coronavirus. Honeybee products are well known of their nutritional values and
medicinal effects. Bee products contain bioactive compounds in the form of a collection of phenolic acids, flavonoids, and
terpenes of natural origin that display wide spectrum antiviral effects. We revealed by molecular docking the profound binding
affinity of 14 selected phenolics and terpenes present in honey and propolis (bees glue) against the main protease (Mpro) and
RNA-dependent RNA polymerase (RdRp) enzymes of the novel SARS-CoV-2 virus (the causative agent of COVID-19) using
AutoDock Vina software. Of these compounds, p-coumaric acid, ellagic acid, kaempferol, and quercetin have the strongest
interaction with the SARS-CoV-2 target enzymes, and it may be considered an effective COVID-19 inhibitor.
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Introduction

In December 2019, COVID-19 firstly manifested in Wuhan,
province of Hubei in China, where frequent number of

patients shared similar symptoms of dry cough, fever, and
fatigue; then they developed into dyspnea quickly, ending
up with acute respiratory distress syndrome (ARDS) in severe
cases (Chen et al. 2020; Chan et al. 2020; Zhu et al. 2020;
Huang et al. 2020; Zhou et al. 2020).

As of 1st of May 2021, the cumulative number of cases
diagnosed with COVID-19 in the world was more than 153
million, whereas more than 3 million cases died (Coronavirus
Update (Live): https://www.worldometers.info/coronavirus -
Worldometer 2021). As a direct effect of the outbreak, more
than 160 countries are fighting to combat the spread of
COVID-19 and taking protective measures to save their citi-
zens from the pandemic; at the same time, research institutes,
drug corporations, biotechnology institutes, and research
groups all over the world are racing to develop effective drugs
or potential vaccines for COVID-19 (Sharpe et al. 2020;
Thanh Le et al. 2020; Pooladanda et al. 2020; Hachfi and
Ben Lasfar 2020; Mullard 2020; Biopharma products in de-
velopment for COVID-19 2021).

As a fast track to save the time needed for safety and ap-
proval studies, researchers started to massively repurpose al-
ready FDA-approved drugs for COVID-19 treatment
(Kandeel and Al-Nazawi 2020; Harr ison 2020) .
Computational-based techniques like molecular modeling
and virtual screening represent magic tools that help to
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understand themolecular aspects of protein ligand interactions
during rational drug design process (Murgueitio et al. 2012).
Virtual screening has been encountered in structure-based
drug design against emerging and fatal diseases of viral origin
(Sirois et al. 2004; Elhefnawi et al. 2012; Raj and Varadwaj
2016; Zhou et al. 2008; Plewczynski et al. 2007).

The key protease (Mpro) and the RNA-dependent RNA
polymerase (RdRP), which are responsible for the viral
polyprotein proteolytic process as well as viral genome repli-
cation and transcription, are two promising drug targets for
SARS-CoV-related diseases (Gao et al. 2020) and the main
protease (Mpro) responsible for virus maturation in addition to
crucial roles in mediating viral replication and transcription
(Jin et al. 2020). Based on their crucial role in the life cycle
of SARS-CoV-2, these two target sites have been extensively
docked to design or distinguish structure-based effective
drugs for COVID-19 (Dai et al. 2020).

Bioactive compounds of natural origin are currently
screened by molecular docking to in silico test their affinity
to molecular targets of COVID-19 taking the advantage that
natural products are free from toxic or side effects (Mani et al.
2020; Sayed et al. 2020; Gurung et al. 2020; Khalifa et al.
2020b). Recently, honeybee products have been proposed as
a potential compatible antiseptic to help protect against the
COVID-19 based on biocidal effect of hydrogen peroxide
and other phytochemicals existing in bee products (Al
Naggar et al. 2020). These phenolic compounds and terpenes
found in honeybee products were documented to possess var-
iable medicinal effects including wound healing, antioxidant,
antimicrobial, antiviral, anti-inflammatory, cardioprotective,
and neuroprotective activities (Küçük et al. 2007; Mohamed
et al. 2009; Al Naggar et al. 2016; Pasupuleti et al. 2017; Jibril
et al. 2019; El-Seedi et al. 2020; Al Naggar et al. 2020; Al
Naggar et al. 2021).

In our study, we performed deep virtual screening via mo-
lecular docking to test binding affinity of various selected
bioactive compounds such as terpenes and flavonoids of hon-
ey and propolis as inhibitors against the COVID-19 essential
enzymes: RNA-dependent RNA polymerase and the main
protease.

Docking methodology

The crystal structures of COVID-19 RNA-dependent RNA
polymerase (RdRp) (PDB code: 6M71) (Gao et al. 2020)
and the main protease (Mpro) (PDB code: 6LU7) (Jin et al.
2020) were retrieved from Protein Data Bank. This docking
study was carried out on 14 compounds (Fig. 1) from honey
and propolis into the receptor active site using AutoDock Vina
(Trott and Olson 2010). These compounds were selected
based on previously reported antiviral activities against related
viruses to COVID-19 (Al Naggar et al. 2020; Shahidi and Yeo

2018); in the same context, several studies employing virtual
screening of closely related members or categories of the se-
lected phytochemicals were performed against SARS-CoV-2
proteins since these phytochemicals are naturally existing in
plants and spices (Sayed et al. 2020; Ibrahim et al. 2020;
Umesh et al. 2020).

Ligand structures were drawn into Marvin Sketch V19.12
(Marvin | ChemAxon 2020), and the most energetically fa-
vored conformer was exported as (*.pdb) file format.
AutoDockTools package (Morris et al. 2009) was used to
assign Gasteiger atomic partial charges, and all the rotatable
bonds in ligands were set to be flexible. For receptor prepara-
tion, all water molecules were removed, the co-crystalized
ligand was removed, Gasteiger atomic partial charges were
assigned, and all receptors and ligands were converted to the
PDBQT format using AutoDockTools package for docking
process. In the AutoDock Vina configuration files, the param-
eter num modes was set to 10 and exhaustiveness to 14. The
grid boxes of center (x= 118.23, y= 103.32, and z= 118.37)
with size (x=17, y=25, z=17) for the RNA-dependent RNA
polymerase and center (x= −10.71, y= 12.41, and z= 68.83)
with size (x=16, y=18, z=16) for the main protease were used
to define the active site. AutoDock Vina was executed. Pymol
(PyMOLMolecular Visualization System 2020) was used for
3D visualization, and the 2D schematic presentation was gen-
erated using LigPlot+ V1.4.5 (Laskowski and Swindells
2011).

Results and discussion

Computational docking was implemented to predict the bind-
ing mode of 14 compounds representing flavonoids, phenolic
acids, and terpenes from honey and propolis (Fig. 1) with two
different targets from COVID-19.

The bioactive compounds, ellagic acid, hesperetin, and
kaempferol, are the most promising compounds on COVID-
19 RdRp, while artepillin C, ellagic acid, hesperetin,
kaempferol, and quercetin were the most active on the main
protease (Mpro). The binding scores for each compound into
the two targets are shown in Table 1. The binding mode for
ellagic acid to COVID-19 RdRb was attributed to H-bond
interaction with Gly808, pro809, His816, Thr817, and Tyr
831, while amino acid residues Trp617, Asp760, and
Asp761 are positioned at distance of H-bond with hesperetin,
and also kaempferol interacts with Glu811 and Asp761 by H-
bond. Furthermore, the aromatic ring system of ellagic acid,
hesperetin, and kaempferol makes π-ion hydrophobic interac-
tion with Lys798 (Fig. 2). We repurpose the compounds of
interesting binding scores as potent inhibitors of viral
replication.

From the docking of all identified compounds into the ac-
tive site of SARS-CoV-2 main protease (Mpro) in the current
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Fig. 1 Chemical structure of important bioactive compounds in honeybee products

Table 1 The binding scores for each compound into the two target enzymes of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and the main
protease (Mpro)

Bioactive compounds SARS-CoV-2 RNA-dependent RNA polymerase SARS-CoV-2 main protease (Mpro)

2,2-Dimethyl-8-prenylchromene −5.6 −6.8
Artepillin C −5.9 −7.5
3-Prenyl cinnamic acid allyl ester −5.3 −6.2
Isocupressic acid −5.8 −6.4
13C-symphyoreticulic acid −5.7 −6.9
Ellagic acid −6.4 −7.5
Syringic acid −5.5 −5.6
Caffeic acid phenethyl ester −5.4 −7.0
p-Coumaric acid −5.3 −5.6
Hesperetin −6.3 −7.4
Naringenin −6.0 −6.5
Kaempferol −6.2 −7.8
Quercetin −6.1 −7.4
Chrysin −6.1 −7.2
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study, artepillin C showed H-bond interaction with Cys145,
Arg188, Thr190, and Gln192, while amino acid residues
His41, Gly143, and Arg188 are positioned at distance of H-
bond with ellagic acid (Fig. 3). In addition, hesperetin inter-
acts with Gly143 by H-bond, while amino acid residues

Tyr54, Leu141, Ser144, Asp 187, and Gln189 are positioned
at distance of H-bond with kaempferol, and also quercetin
makes H-bond with Tyr54, Leu141, Ser144, His163, and
Gln189. Furthermore, the aromatic ring system of artepillin
C, ellagic acid, hesperetin, kaempferol, and quercetin makes

Fig. 2 The docking complex of a ellagic acid, b hesperetin, and c kaempferol (green) with the X-ray structure of 6M71; SARS-CoV-2 RNA-dependent
RNA polymerase (left, tint) that showed hydrogen bond (blue) interaction and 2D schematic diagram of the interaction (right)
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π-ion hydrophobic interaction with either Met165 or Glu166
(Fig. 4). Taken together we propose the indicated flavonoids
as potential inhibitors of the main protease of COVID-19, thus
limiting viral maturation.

In line with our finding, promising candidates identified
in our study like p-coumaric acid, ellagic acid, kaempferol,
and quercetin were previously found to have potential an-
tiviral activity against the common cold human rhinovirus
which is RNA virus like SARS-CoV-2; surprisingly the
mentioned bioactive compounds were suggested in the
same study to block or reduce the viral entry into the cells
to protect the cells from the virus cytopathic effects and
subside virus replication (Kwon et al. 2019), supporting
our virtual screening. Moreover, quercetin and its deriva-
tives were previously confirmed to inhibit the SARS-CoV
proteases of other coronaviruses including SARS-CoV
proteases (3CLpro and PLpro) which share 97% homology
to COVID-19 main protease (Bafna et al. 2020) as well as

the Middle Eastern respiratory syndrome coronavirus
(MERS-CoV) 3CLpro protease (Nguyen et al. 2012).
Quercetin was also able to inhibit both enzymes in vitro
in micromolar doses (Park et al. 2017); in general SARS-
CoV and MERS-CoV share 82.45 and 69.58 percentage
identity of their genome to SARS-CoV-2 (Kaur et al.
2020). The existence of this mixture of phytomedicines
in bee products create a broad spectrum anti-COVID-19
cocktail that targets more than one crucial enzyme of the
virus. Aside from the two enzymes we docked in our sam-
ple, other studies investigated the binding affinity of bee
phytochemicals, especially propolis from various geo-
graphical origins, against other COVID-19 targets through
virtual screening (Khalifa et al. 2020a; Ibrahim et al. 2020;
Khalifa et al. 2020b; Khayrani et al. 2021; Güler et al.
2020). Taken all together, from our study and other stud-
ies, we spot the light on the protective and preventive role
of honeybee products against COVID-19.

Fig. 3 The docking complex of a artepillin C and b ellagic acid (green) with the X-ray structure of 6LU7; SARS-CoV-2 main protease (Mpro) (left, tint)
that showed hydrogen bond (blue) interaction and 2D schematic diagram of the interaction (right)
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Conclusions

Molecular docking of honeybee products’ set of bioactive
compounds against unique COVID-19 targets, including
Mpro and RdRb enzymes, has distinguished promising com-
pounds of natural origin with deep binding to the respective

COVID-19 targets. P-coumaric acid, ellagic acid, kaempferol,
and quercetin are the most promising compounds on COVID-
19 active sites (RdRb and Mpro). These bioactive compounds
were also found to have potential antiviral activity against the
common cold human rhinovirus which is RNA virus like
SARS-CoV-2. In summary and based on our theoretical

Fig. 4 The docking complex of a hesperetin, b kaempferol, and c quercetin (green) with the X-ray structure of 6LU7; SARS-CoV-2 main protease
(Mpro) (left, tint) that showed hydrogen bond (blue) interaction and 2D schematic diagram of the interaction (right)
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studies supported by previous in vitro confirmatory studies,
we recommend further in vivo investigations to assess the
predicted affinity of the selected compounds against the novel
coronavirus target enzymes.
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