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The recent emergence of COVID-19 represents one of the biggest challenges facing the
world today. Despite the recent attempts to understand the epidemiological pattern and
pathogenesis of the disease, detailed data about the physiology and pathology of the
disease is still out of reach. Moreover, the lack of a widespread vaccine prompts an
urgent call for developing a proper intervention strategy against the virus. Importantly,
identification of novel molecules that target replication of the virus represents one of the
promising strategies for the control this pandemic crisis. Among others, honey bee
products contain numerous bioactive compounds such as propolis and several
phenolic compounds that possess a wide range of therapeutic properties for
combating various pathological disorders and infectious agents. The intention of the
present review is to highlight the stages of SARS-CoV-2 lifecycle, the molecular
mechanisms explaining the health benefits of honey bee products on COVID-19
physiology and pathology and the possible limitations. Further future research is
suggested to explore more about bee natural bioactive compounds as potential
candidates against SARS-CoV-2.
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INTRODUCTION

Corona viruses (CoV) are a group of positive-sense single-stranded RNA viruses ranging between 26
and 32 kb in size (Graham et al., 2013; Song et al., 2019). This group of viruses belongs to genus
β-Coronavirus, family Coronaviridae, and order Nidovirales (Paules et al., 2020). The
epidemiological profile of Corona viruses’ infection involves a wide range of hosts that include
humans, birds, and other mammals (Monchatre-Leroy et al., 2017; Cui et al., 2019). The clinical
impact of these viruses ranges from asymptomatic cases to severe symptoms, affecting respiratory,
digestive, and genital organs. In accordance with COVID-19, the disease has been emerged and
detected for the first time in patients with respiratory illness of unknown etiology in the urban center
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town, Hubei Province, Central China (Graham et al., 2013; Song
et al., 2019; Paraskevis et al., 2020). The viral agent was defined as
coronavirus illness 2019 (COVID-19) or SARS-CoV-2 (Li et al.,
2020b; Sun et al., 2020; Xu et al., 2020). As of December 15, 2020,
more than 73,212,302 confirmed cases of COVID-19 and 1,628,442
deaths have been reported worldwide (Worldometer, 2020).
Interestingly, honeybee products have been used in treatment of
many diseases including tumor and immune-related diseases (Yusuf
et al., 2007; Wieckiewicz et al., 2013). In this regard, honey, propolis,
Bee pollen and Bee venom created by bees possess many biological
activities like antibiotic, antifungal, antioxidant, antiviral, inhibitor,
anti-cancer, and immunomodulatory, hepatoprotective effects
(Banskota et al., 2001; Tolba et al., 2013; Pasupuleti et al., 2017;
Hashem, 2020; Shaldam et al., 2020). The following sections include
an overview about structure, pathogenesis and mechanistic activities
of SARS-CoV-2 and the potential application of Bee’s products in
treatment of the disease.

STRUCTURE OF SARS-COV-2

As mentioned above, SARS-CoV-2 or CoV is an RNA virus
belonging to the genus β-Coronavirus (Paules et al., 2020). This
virus is a positive-sense RNA virus with a size of around 30 kb and
about 74–99% identity with the coronavirus from the placental
mammal (Manis javanica) and horseshoe bat (Rhinolophus
sinicus) (Bat-CoVRaTG13), respectively (Zhu et al., 2020b). The
typical CoV contains a minimum of six open reading frames
(ORFs) (Consortium, 2004). The primary ORF (ORF1a/b) is a
simple fraction that concerns the entire order length and encodes
sixteen non-structural proteins (nsp1-16) (Consortium, 2004;
Narayanan et al., 2015). Furthermore, the virus includes four
main structural proteins; spike (S), envelope (E), membrane
(M), and nucleocapsid (N) proteins which are shown in
Figure 1 (Consortium, 2004; Peiris et al., 2004; Li et al., 2020a;
Nadeem et al., 2020; Wrapp et al., 2020). It should be stressed
that most of the non-structural proteins are known to play a
significant role in virus replication while structural proteins are
vital for particle assembly and for inflicting CoV infection
(Consortium, 2004; McBride et al., 2014; Astuti and Ysrafil,
2020). Moreover, specific structural and accent proteins, like HE
macromolecules are also encoded by CoV (Chen et al., 2020a;
Naqvi et al., 2020).

STAGES OF SARS-COV-2 LIFECYCLE AND
THE POTENTIAL INHIBITION TARGETS

It is noteworthy to state that SARS-CoV-2 targets cells through
the infectious agent structural spike (S) supermolecule that binds
to the angiotensin-converting enzyme two (ACE2) receptor
(Wang et al., 2007; Magrone et al., 2020). Following its
binding to the receptor, the virus uses host cell receptors and
endosomes to enter cells while this action is facilitated by
transmembrane protease/serine subfamily member 2 via the S
supermolecule (Hoffmann et al., 2020b). Once within the cell, the
infectious agent polyproteins area unit synthesized targets the

assembly of replicase-transcriptase complex (Sawicki et al., 2005).
The virus then synthesizes RNA via its RNA-dependent RNA
enzyme and the structural proteins area unit synthesized,
resulting in completion of assembly which is followed by the
release of infectious agent particles (Fung and Liu, 2014; Fehr and
Perlman, 2015; Chen et al., 2020a). These steps of the SARS-CoV-
2 lifecycle represent potential drug targets (Figure 2) and there
are other drug targets which trigger infectious agent entry and
immune regulation pathways (Savarino et al., 2003; Al-Bari,
2017).

THE ROLE OF NATURAL THERAPY
STRATEGY IN SARS-COV-2

Revising the available literature, several previous studies explored
the promising role of some natural compounds and
phytochemical extracts, e.g. Lycoris radiata (red spider lily),
Lindera aggregata, Pyrrosia lingua (a fern), and Artemisia
annua (sweet wormwood), in treatment of outbreaks of SARS
(Wu et al., 2004; Hoever et al., 2005; Li et al., 2005; Kim et al.,
2010). Taken into account, these previously mentioned extracts
showed various degrees of activity against SARS-CoV ranged
from moderate to potent and their antiviral actions were dose-
dependent. Among others, Lycoris radiata (red spider lily)
expressed the most potent antiviral activity (Li et al., 2005).
Glycyrrhizin, which is an active compound contained in
licorice roots, is another example for the herbal extracts that
displayed potent antiviral activity against SARS-CoV by
inhibiting the replication of the virus when tested on 10
different clinical strains of SARS-CoV (Cinatl et al., 2003;
Hoever et al., 2005). Furthermore, Lycorine, a toxic crystalline
alkaloid found in various Amaryllidaceae species and Baicalin (a
constituent of the Baikal skullcap plant), has also shown potent
antiviral effects against SARS-CoV (Fielding et al., 2020).
Interestingly, myricetin, scutellarein, and phenolic compounds
from dyer’s woad and Japanese nutmeg-yew have shown to be
potent antagonists of SARS-CoV enzymes, including nsP13
helicase and 3CL protease (Lin et al., 2005; Ryu et al., 2010;
Yu et al., 2012). In addition, some natural phytomedicines, e.g.,
the aqueous extract of fish mint, mediated several antiviral
mechanisms in SARS-CoV (Lau et al., 2008). However, it
should be borne in mind that some discrepancy in results has
been reported as these in vitro data may not correlate with in vivo
findings that renders the use of some of these natural compounds
as an effective antiviral agent. The following subsections will
highlight the potential inhibition targets in the different stages of
SARS-CoV-2 lifecycle and the potential application of bee
products in treatment of the disease.

Potential Repressive Properties Against
ACE-2 Receptors
The intra- or inter-species transmission of β-coronaviruses
(CoVs) requires an interaction between the infective agent and
the host cell receptors that results in the invasion of the virus into
host cells (Li, 2016). Some recent studies reveal that human, pig,
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and civet cell lines allowed SARS-CoV-2 infection and
replication, indicating that the virus uses ACE2 receptor for
infection (Hoffmann et al., 2020a; Zhu et al., 2020a; Zhu et al.,
2020b; Letko et al., 2020; Zhou et al., 2020). ACE2 is extremely
expressed within the respiratory organs that make the lung tissue
highly vulnerable (Hamming et al., 2004). In addition, the ACE2
receptor is expressed within the epithelial tissue cells of gut,
kidney, and heart cells (Zhang and Liu, 2020). It is therefore not
surprising to state that ACE2 blockers are another choice to
control the infection (Ton et al., 2020). Similarly, some molecules
such as GSK1838705A (a small-molecule kinase inhibitor),
KT203 (inhibitor of α/β-hydrolase domain), KT185 (brain-
penetrant and selective ABHD6 inhibitor), and BMS195614
(selective RARα antagonist) showed strong binding affinities
with receptor binding sites (RBD) of the infective agent
S-protein. These molecules facilitate the management of fast
infection by participating the virus at entry points (Choudhary
et al., 2020). Therefore, ACE II enzyme inhibition seems an
important target for treatment of these cases of infection
caused by SARS-CoV-2.

Propolis, or bee glue, is defined as a natural resinous mixture
produced by bees through its collection from nature (Sforcin,
2016; Drescher et al., 2019). The honey bee produces this
mixture though mixing saliva and beeswax together with the
collected exudate from several botanical sources such as tree
and plants buds (Zabaiou et al., 2017). Interestingly, this

mixture possesses a wide range of activity against various
infections agents in addition to its role in wound healing
(Pasupuleti et al., 2017; Oryan et al., 2018). In accordance
with its texture, crude propolis could be extremely viscous and
slightly soluble in water. Propolis has been an important
element of apitherapy for hundreds of years. Recently, it has
been used as an additive in the name of the ancient practice of
medicine (Pobiega et al., 2018; Anjum et al., 2019). The bulk of
the active ingredients of propolis comprise the family of
polyphenols. In this concern, phenolic acids, flavonoids
(flavanones, flavones, flavonols etc.), stilbenes, and tannins
are considered the most active polyphenols of propolis
(Graikou et al., 2015; Anjum et al., 2019). In addition,
several previous in vitro and in vivo studies showed that
flavonoids have high potential for inhibition of Angiotensin-
Converting enzyme (ACE) (Hussain et al., 2018; Wang et al.,
2018; Silveira et al., 2019). A recent study measured and
checked the binding constants of 10 flavonoids, including
caffeic acid, caffeic acid phenethyl ester, galangin, chrysin,
rutin, hesperetin, myricetin, pinocembrin, quercetin, and
luteolin, using the AutoDock 4.2 molecular arrival program
and compared to a reference substance of MLN-4760 which is
known as ACE2 inhibitor (Güler et al., 2020). The results
showed that rutin has the simplest inhibition potential
among the studied molecules. Clearly, the high potential of
flavonoids extracts to bind to ACE II receptors indicates that

FIGURE 1 | (A) Schematic representation of the genome organization and functional domains of S protein for COVID-19. The single-stranded RNA genomes of
COVID-19 encode two large genes, the ORF1a and ORF1b genes, which encode 16 non-structural proteins (nsp1–nsp16). The structural genes encode the structural
proteins, spike (S), envelope (E), membrane (M), and nucleocapsid (N), which are common features to all coronaviruses. (B) The SARS-CoV-2 genome is arranged in the
order of 5′-replicase (ORF1a/b)–structural proteins [spike (S)–envelope (E)–membrane (M)–nucleocapsid (N)]−3′ (reproduced from Consortium, 2004; Peiris et al.,
2004; Li et al., 2020a; Nadeem et al., 2020; Wrapp et al., 2020).
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this natural bee product might exhibit marked activity for
Covid- 19 treatment (Güler et al., 2020; Shaldam et al.,
2020). However, these findings must be supported by
experimental studies.

Potential Repressing Properties Against
Proteinase Enzyme
The inhibition of infectious agent proteinase is a crucial target in
drug development. The 3C-like proteinase (3CLpro) might be a
cysteine proteinase that hydrolyzes the polyproteins pp1a and
pp1ab to supply purposeful proteins throughout the replication of
the virus. As result of its extremely preserved sequence and
essential properties, 3CLpro has been validated as a possible
target for the treatment of respiratory illnesses such as MERS,
and COVID-19 (Kumar et al., 2017; Dong et al., 2020; Jo et al.,
2020). Recently, a wide range of natural and artificial inhibitors
that focus on completely different sites and regions of 3CLpro
have been developed (Muramatsu et al., 2016; He et al., 2020;
Theerawatanasirikul et al., 2020; Ye et al., 2020). Because the
extremely preserved process sites of 3CLpro area unit shared by
CoVs (Kumar et al., 2017; Dong et al., 2020), tremendous efforts
have been created to review this target in order to meet the urgent
need for the development of anti-SARS-CoV-2 therapy (Ton
et al., 2020). Their targets include antecedently approved
medicine, run candidates, and bioactive agents that were
known as potential treatments for respiratory illness and MERS

(Ton et al., 2020). Most studies targeted the small-molecule
compounds, through virtual screening, that supported the
crystal structure of 3CLpro (Chen et al., 2020b). It should be
stressed that the natural bee products such as flavonoids
(herbacetin) and Chalcones are considered candidate
compounds which are related to the protein activity or
infectious agent load in vitro. In addition, Herbacetin
(PubChem CID: 5280544) exerted outstanding repressing
effects, with the IC50 values of 33.2 μM. An induced-fit docking
tying up study with SARS-CoV 3CLpro (PDB ID: 4WY3) showed
that herbacetin shaped four H-bonds at the S2 website besides the
8-hydroxyl cluster that was essential for the formation of H-bonds
with Glu166 and Gln 189 (Jo et al., 2020).

Interestingly, several previous studies documented that
galangin, kaempferol, chrysin, and pinocembrin were detected
in Croatian Cystus incanus L. bee pollen (Saric et al., 2009). The
presence of herbacetin, myricetin, tricetin, luteolin, and 3-O-
methylquercetin was also documented (Campos et al., 2003). A
series of alkylated chalcones isolated from Angelica keiskei, were
evaluated for their repressing activities against SARS-CoV
3CLpro. Among these chalcones, compound, with a
perhydroxyl cluster, showed the foremost potent repressing
impact (IC50 � 11.4 ± 1.4 μM). Clearly, these previously
mentioned results reveal that the perhydroxyl cluster can be
crucial for the binding to SARS-CoV 3CLpro. Tying up
studies of the compound with 3CLpro (PDB ID: 2ZU) showed
that the carbonyl and hydroxyl group teams shaped H-bonds
with His163 and Ser144, respectively. The perhydroxyl cluster
shaped a powerful H-bond with the very important residue
Cys145 (Park et al., 2016). It is noteworthy to state that honey
contains various compounds besides water, sugars, free amino
acids, proteins, enzymes, essential minerals, vitamins, and
numerous phytochemicals (Escuredo et al., 2013). In addition,
polyphenols are heterogeneous categories of chemical
compounds which are divided into flavonoids (flavonols,
flavones, flavanones, flavanols, chalcones, anthocyanidin, and
isoflavones) and non-flavonoids (phenolic acids). The phenolic
resin composition in honey mainly depends on its floral origin
that can be used as a tool for classification and authentication,
particularly within unifloral varieties (Kennedy and Wightman,
2011; Chan et al., 2013; Keckes et al., 2013; Campone et al., 2014).
Importantly, two compounds of chalcones (2′, 4′-
dihydroxychalcone and 2′,4′- dihydroxy 3′-methoxychalcone)
were also found in propolis samples from the four-card monte
phytogeographical region (Solórzano et al., 2012).

Potential Restrictive Properties Against
Methyltransferase
It should be stressed that cap formation of an mRNAs infectious
agent requires universally three sequent accelerator reactions.
Firstly, RNA triphosphatase (TPase) removes the c-phosphate
cluster from the 59-triphosphate finish (pppN) of the emergent
RNA chain to come up with the diphosphate 5ʹ-ppN. Later on,
RNA guanylyltransferase (GTase) transfers a Guanosine
monophosphate (GMP) to the 59-diphosphate to yield the cap
core structure (GpppN). Then, N7- MTase methylates the

FIGURE 2 | Schematic represents virus-induced host immune system
response and viral processing within target cells.
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capping guanylate at the N7 position to supply a cap-0 structure
(m7GpppN) (Furuichi and Shatkin, 2000). Taken into account,
lower eukaryotes such as yeast use a cap-0 structure while higher
eukaryotes and viruses sometimes markedly methylate the cap-0
structure at ribose 2ʹ-O position of the first and second nucleotide
of the mRNA via a ribose 2ʹ-OMTase, which in turns create cap-1
and cap-2 structure, respectively (Furuichi and Shatkin, 2000).
Taken into consideration, it was shown that ribose 2ʹ-O-
methylation of viral RNA cap provided a mechanism for viruses
to overcome the host immune recognition (Daffis et al., 2010; Zust
et al., 2011). Furthermore, it was recently reported that SARS-CoV
nsp16 acts as 2ʹ-O-MTase which together with nsp10 give the rise
to cap-1 structure (Bouvet et al., 2010). Interestingly, some of the
honey bee compounds showed high affinity on 2ʹ-O-methylates.
Among the FDA-approved medications, paritaprevir and
teniposide influence the conversion of spike macromolecule, 2′-
o-ribose methyltransferase, dihydroergotamine and venetoclax to
nucleocapsid macromolecule and 2′-o-ribose methyltransferase.
Among the natural products, amyrin (triterpenes), procyanidin,
and proanthocyanidin (category of flavonoids) influence the
activity of 2′-o-ribose methyltransferase (Kadioglu et al.,
2020). It is noteworthy to state that the major compounds of
propolis are triterpenoids that have a relative concentration of
74%, steroids, and diterpenoids (Elnakady et al., 2017). Raw
propolis contains over three hundred different compounds that
largely consist of triterpenes (50% w/w), waxes (25–30%), and
phenolics (5–10%), volatile mono- and sesquiterpenes (8–12%)
and the last compound gives propolis its typical pitchy odor
(Huang et al., 2014).

Potential Restrictive Properties Against
Ribonucleic Acid-dependent RNA Enzyme
Ribonucleic acid-dependent RNA enzyme (RdRp) is considered
a crucial enzyme for coronaviruses as it catalyzes the replication
of ribonucleic acid from RNA templates. Importantly, a
remarkable similarity in the sequences and cipher structures
of RdRp were reported among the sequence of RdRp in severe
acute respiratory syndrome coronavirus (SARS-CoV), SARS-
CoV-2 and Middle East respiratory syndrome coronavirus
(MERS-CoV) (Feng et al., 2020; Morse et al., 2020).
Interestingly, Remdesivir (GS-5734) might represent a
nucleoside ester analogue substance of RdRp since it showed
broad-spectrum antiviral activity against many ribonucleic acid
viruses, as well as filovirus, SARS-CoV and MERS-
CoV(Tchesnokov et al., 2019; Gordon et al., 2020; Zhang and
Liu, 2020). Furthermore, a recent report indicated that
remdesivir improved the vital condition of a patient with
COVID-19 that might represent a therapeutic target for
SARS-CoV-2 (Holshue et al., 2020).

Interestingly, twelve completely different flavonoids were
detected in propolis extracts namely, pinocembrin, acacetin,
chrysin, rutin, luteolin, kaempferol, apigenin, myricetin,
catechin, naringenin, galangin, and quercetin; 2 synthetic resin
acids, caffeic acid and cinnamic acid (Volpi, 2004). Among
others, myricetin has high binding affinity toward the RdRp of
each SARS-CoV and SARS-CoV-2 with favorable materia medica

properties. This compound has been consumed since a time long
ago and does not possess any inherent toxicity besides exhibiting
a broad range of therapeutic properties, suggesting the potential
use of this natural compound as inhibitor for RdRp of SARS-
CoV-2. However, additional in vitro and in vivo studies seem
mandatory to validate its efficaciousness against SARS-CoV-2
(Singh et al., 2020).

POTENTIAL REPRESSIVE PROPERTIES
AGAINST THE CYTOKINE STORM

Revising the available literature, threatens of COVID-19 is
partially related to cytokine storm which is defined as an
exaggerated production of proinflammatory cytokines that
results in multi organ system failure (Jose and Manuel, 2020;
Tufan et al., 2020). It has been documented that COVID-19
infected patients with cytokine storm manifest high levels of
cytokines, together with higher plasma levels of various
interleukins (IL), including IL-2, IL-6, IL-7, IL-10,
Granulocyte colony-stimulating factor (G-CSF), Interferon
gamma (IFNγ), Microtubule-associated protein 1 alpha,
and Tumor necrosis factor alpha (TNFα) (Costela-Ruiz
et al., 2020; Mehta et al., 2020). Among others, IL6 is an
inflammatory protein involved in cytokine storms that
triggers the upregulation of T helper 1 (Th1) and T helper
cell 2 (Th2) pathways (Kipar et al., 2006; Yan et al., 2018). In
addition, whole bee venom down-regulates TNFα and IL-6
(Kim et al., 2011; Darwish et al., 2013; Shin et al., 2017).
Moreover, bee venom is already utilized in some varieties of
stylostixis for treatment of inflammatory arthritis (Lee et al.,
2005). It was reported that cytokine IL10 down-regulates
inflammatory cytokines like IL1 and TNF alpha in
coronavirus infections (Cox, 1996). Bee venom (BV) was
also reported to contain many enzymes, together with
phospholipase A2 (PLA2), phospholipase B, spreading
factor, acid enzyme and–glucosidase (Hossen et al., 2016).
In a previous study, Park et al. (2015) showed that bee venom
phospholipase A2 (BV PLA2) ameliorates allergic airway
inflammation. This study found that BV PLA2 treatment
causes diminished infiltration of neutrophils, eosinophils,
lymphocytes, and macrophages in bronchoalveolar
irrigation fluid (BLAF) (Park et al., 2015). Another study
revealed that BV PLA2 includes a CD4+CD25 + Foxp3+
Treg cell-mediated protection against acute respiratory
organ inflammation induced by actinotherapy (Shin et al.,
2016). Interestingly, the exaggerated IL10 that was reported in
beekeepers compared to the rest of population might be
attributed to the chronic low level exposure to bee venom
(Meiler et al., 2008). A recent study also proposed that
beekeepers are often prevented from SARS-CoV-2 as
results of this population developing a tolerance to bee
stings (Yang et al., 2020). Clearly, this observation suggests
that bee venom or product with active ingredients contained
in bee venom can be used in people at high risk of serious
COVID-19 to forestall or attenuate cytokine storm within the
context of COVID-19.
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LIMITATIONS OF THE STUDIES CARRIED
OUT IN HONEY BEE COMPOUNDS

Given the above information, natural products are among the
therapeutic options for SARS-CoV-2 infection (Serkedjieva et al.,
1992; Calixto, 2005; Maruta and He, 2020). Propolis is an
example for honey bee compounds that can reduce and
alleviate the symptoms of inflammatory diseases by affecting
various metabolic cycles (Machado et al., 2012; Hori et al.,
2013; Piñeros et al., 2020). However, found many restrictions
were found for the approval and acceptance of these substances as
a health-promoting supplement in various countries since these
compounds e.g., propolis products are not standardized and vary
in their components and biological activity among countries and
even at a regional level, and therefore, faced many relevant
criticism (Bankova, 2005; Toreti et al., 2013; Miguel et al.,
2014). However, it should be stressed that standardized
propolis products e.g., standardized Brazilian propolis extract
blend have recently become available to overcome this major
drawback and showed higher safety profile and major
effectiveness for treatment of many pathological conditions
(Berretta, 2007; Berretta et al., 2012; Berretta et al., 2017;
Silveira et al., 2019; Zaccaria et al., 2019). Therefore,
standardized propolis is considered an example for natural
products that can be used a nutraceutical or functional food
resource that might provide a promising safe and easy to
administer therapeutic for fighting COVID-19 pandemic
(Fielding et al., 2020).

CONCLUSIONS, LIMITATIONS, AND
FUTURE PERSPECTIVES

Given the above information, the current pandemic status of
COVID-19 calls the urgent need to develop non-traditional novel
drug targets and vaccines for combating the disease. Interestingly,
several previous studies revealed the physiological and
therapeutic actions of bee products (propolis, bee pollen, bee
venom and honey) and their components, implicating their
potential role in controlling various pathological conditions
including COVID-19. However, it should be borne in mind
that studies on bee bioactive compounds and their role in
COVID-19 are limited and bee products may have different
compositions. Taken together, the current review suggests
further future studies on exploring the potential beneficial use
of bee products besides investigation their detailed chemical
analysis. This detailed information might provide clues for
their use as potential drug targets for combating CoVID-19
either alone or in association with other drugs.
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