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Abstract 

Despite tremendous advances in the development of anti-viral therapeutics, viral infections remain a chief culprit 
accounting for ongoing morbidity and mortality worldwide. Natural products, in particular animal venoms, embody a 
veritable cornucopia of exotic constituents, suggesting an immensurable source of anti-infective drugs. In this context, 
melittin, the principal constituent in the venom of the European honeybee Apis mellifera, has been demonstrated to 
exert anti-cancer, anti-inflammatory, anti-diabetic, anti-infective, and adjuvant properties. To our knowledge, there is 
no review appertaining to effects of melittin against viruses, prompting us to synopsize experimental investigations on 
its anti-viral activity throughout the past decades. Accumulating evidence indicates that melittin curbs infectivity of a 
diverse array of viruses including coxsackievirus, enterovirus, influenza A viruses, human immunodeficiency virus (HIV), 
herpes simplex virus (HSV), Junín virus (JV), respiratory syncytial virus (RSV), vesicular stomatitis virus (VSV), and 
tobacco mosaic virus (TMV). However, medication safety, different routes of administrations, and molecular 
mechanisms behind the anti-viral activity of melittin should be scrutinized in future studies. 

Introduction 

Viruses virtually parasitize every living creature on planet earth, from animals and plants to bacteria and archaea. 
Human beings have been also afflicted by these non-living entities throughout history. Some viral diseases such as 
acquired immune deficiency syndrome (AIDS), Ebola hemorrhagic fever, hepatitis B and C, influenza, and rabies still 
continue to evoke inordinate fear in societies [1]. For instance, the “Spanish flu” pandemic, which swept around the 
globe in 1918, claimed the lives of more people than perished in World War I [2]. The World Health Organization (WHO) 
estimates that 35 million individuals have succumbed to AIDS-related illnesses since the beginning of the human 
immunodeficiency virus (HIV) epidemic in the early 1980s. As of 2017, nearly 36.9 million people are living with HIV 
worldwide [3]. 

Over the past half-century, tremendous efforts have been devoted to develop anti-viral drugs. However, this process 
is time-consuming, exorbitantly expensive, and tediously meticulous [4]. These problems are even further exasperated 
when mutations in a viral genome give rise to drug resistance [5]. All these facts have impelled researchers to discover 
unique biochemical compounds for the treatment of viral diseases. In this respect, natural products embody a 
miscellaneous array of exotic constituents, propounding an immensurable source of anti-infective drugs [6]. 

Some animals such as snake, scorpions, spiders, and bees produce poisonous secretions termed venoms to 
kill/incapacitate preys or defend against predators. Regardless of their detrimental effects, animal venoms have long 
held a fascination for humankind owing to their pharmacologically active components including enzymes and peptides 
[7, 8]. In this context, therapeutic properties of venoms for treating neurologic and cardiovascular illnesses, cancer, 
atopic dermatitis, diabetes, and gastrointestinal maladies have been documented since medieval times [9]. Venom-
derived peptides have recently provoked great attention among newly enthused researchers, since they are not only 
selective and potent but also relatively innocuous as therapeutics [9, 10]. Indeed, these features together with infinite 
biodiversity of venom-derived peptides may revitalize flagging drug development programs. 

Heretofore, six medications derived from venom peptides have been approved by the US Food and Drug 
Administration (FDA) for clinical use: captopril (from snake, Bothrops jararaca; 1981), eptifibatide (from snake, 
Sistrurus miliarius barbouri; 1998), tirofiban (from snake, Echis carinatus; 1999), bivalirudin (from medicinal leech, 
Hirudo medicinalis; 2000), ziconitide (from cone snail, Conus magus; 2004), and exenatide (from lizard, Heloderma 
suspectum; 2005) are used for the treatment of hypertension, acute coronary syndromes, acute coronary syndromes, 
coagulation during surgery, chronic pain, and diabetes mellitus type 2, respectively [9, 11,12,13,14,15,16]. At the time 
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of writing this article, several venom-derived peptides are in clinical trials or preclinical development for curing a vast 
array of maladies [17]. 

Melittin is the principal constituent in the venom of the European honeybee Apis mellifera [18]. It is an amphipathic 
hexacosapeptide (NH2-Gly-Ile-Gly-Ala-Val-Leu-Lys-Val-Leu-Thr-Thr-Gly-Leu-Pro-Ala-Leu-Ile-Ser-Trp-Ile-Lys-Arg-Lys-
Arg-Gln-CONH2) in which the N- and C-terminal regions are predominantly hydrophobic and hydrophilic, respectively 
[19, 20]. This uneven distribution of polar and non-polar amino acid residues gives the melittin amphipathic structure 
when it is folded into an α-helical configuration [21]. Melittin is composed of two α-helices connected through a flexible 
segment [22]. Tetrameric melittin is predominant at concentrations found in the venom sac of the honeybee, but 
changes in peptide concentration and ionic strength result in tetramer to monomer dissociation [23, 24]. Melittin 
interacts with cell membranes and induces pore formation at micromolar concentrations, thereby disturbing 
membrane function and triggering cell lysis [25, 26]. 

In spite of some concerns over cytotoxic properties of melittin, there is a mounting body of evidence on its therapeutic 
values. Melittin has been shown to exert anti-cancer [27], anti-inflammatory [28], anti-diabetic [29], anti-microbial 
[30], anti-biofilm [24], and adjuvant [31] properties. Since the late 1970s, praiseworthy endeavors have been devoted 
to ascertain the anti-viral action of melittin in vitro and in vivo. To the authors’ knowledge, there is no review 
appertaining to effects of melittin against viruses, prompting us to synopsize experimental investigations on its anti-
viral activity throughout the past decades. 

In vitro studies 

Cell culture models are convenient and cost-effective tools to study the molecular mechanisms of viral life cycles as 
well as preliminary toxicological screening of drug candidates. Thus far, many investigations have been conducted to 
measure efficacy of melittin against diverse viral species, which are recapitulated in Tables 1 and 2. For the reader’s 
convenience, we categorized these studies based on viral families. 

Table 1 In vitro anti-viral effects of melittin 

Family/virus 
(strain) 

Methods Results References 

Arenaviridae 

  Junín virus (IV4454) 
Virucidal assay and viral yield 
inhibition 

Melittin hampered multiplication of Junín virus in 
Vero cells infected at a multiplicity of infection 
(MOI) of 0.1. 

[32] 

Flaviviridae 

  Bovine viral 
diarrhea virus 
(NADL) 

Treatment of cells with melittin 
(before and after viral infection) 

Melittin was failed to reduce viral particles, 
though addition of apamin potentiated its anti-
viral activity. 

[33] 

Herpesviridae 

  HSV-1 (MP, syn20, 
FFV3, tsB5, and 
amb 1511-7) 

Phase-contrast microscopy 
(evaluating cell fusion and plaque 
morphology), viral yield 
inhibition, adsorption and 
penetration assays 

Melittin (0.5 μM) impeded HSV-1-induced cell 
fusion in glycoprotein K mutants, but not 
glycoprotein B mutants. It was also effective in 
inhibiting HSV-1 adsorption and penetration. 

[34] 

  HSV-1 M (ATCC 
VR-539) and HSV-2 
G (ATCC VR-734) 

Virucidal assay 
Melittin completely inactivated HSV-1 M and 
HSV-2 G. 

[35] 

  HSV-1 (F) and 
HSV-2 (G) 

Virucidal assay and viral yield 
inhibition 

Melittin (0.5–3 μM) inhibited infectivity of both 
HSV-1 and HSV-2. 

[32] 

  GFP-fused HSV 
Viral yield inhibition and analysis 
of GFP expression 

Compared to untreated groups, melittin 
treatment (2 μg/mL) led to a 16-fold reduction in 
viral titers and a pronounced decrease in GFP 
expression in infected cells. 

[36] 
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Family/virus 
(strain) 

Methods Results References 

  BoHV-1 (Los 
Angeles) 

Treatment of cells with melittin 
(before and after viral infection) 
and virucidal kinetics 

Melittin (2 μg/mL) exhibited potent anti-viral 
effects on BoHV-1. Melittin (25 μg/mL) required 
2 and 4 h to completely wipe out BoHV-1 at 37 °C 
and 22 °C, respectively. 

[33] 

Orthomyxoviridae 

  GFP-fused 
influenza A (PR8) 

Viral yield inhibition, analysis of 
GFP expression, virus attachment 
assay, entry assay, and virucidal 
mechanism 

Compared to untreated groups, melittin 
(2 μg/mL) reduced both viral titers and GFP 
expression in infected cells (without affecting 
either virus-cell attachment or virus entrance 
into cells). 

[36] 

Picornaviridae 

  EV-71 
Viral yield inhibition, analysis of 
GFP expression, and real-time 
polymerase chain reaction 

Melittin reduced EV-71 infectivity and cytopathic 
effects as well as mRNA expression levels of VP1 
(4-fold) compared to untreated groups. 

[36] 

  GFP-fused 
coxsackievirus (H3) 

Viral yield inhibition and analysis 
of GFP expression 

Melittin (2 μg/mL) diminished both GFP 
expression (1.5-fold) in infected cells and virus 
titers (5-fold) compared to untreated groups. 

[36] 

Pneumoviridae 

  GFP-fused RSV 
Viral yield inhibition and analysis 
of GFP expression 

Melittin (2 μg/mL) markedly reduced not only 
virus titers but also GFP expression in infected 
cells compared to untreated groups. 

[36] 

Rhabdoviridae 

  GFP-fused VSV 
Viral yield inhibition, analysis of 
GFP expression, and virucidal 
kinetics 

Melittin (2 μg/mL) rapidly (5–30 min) suppressed 
VSV infectivity, and caused substantial reduction 
in both virus titer and GFP expression in infected 
cells compared to untreated groups. 

[36] 

  VHSV Immunostaining focus assay 

Melittin-loaded liposomes and 
immunoliposomes inhibited VHSV-infected cell 
foci formation and reduced the VHSV spread in 
cell culture. 

[37] 

Retroviridae 

  MuLV (ATS-124) 
Direct virolysis and electron 
microscopy 

Melittin (50 μg) disintegrated the viral 
membrane, resulting in complete release of 
reverse transcriptase after 30 min of incubation 
at 20 °C. 

[38] 

  RAV-2 
Direct virolysis (permeabilization 
of viral envelope) 

Melittin made the viral envelope permeable. 
Compared to NP-40, melittin caused less damage 
to viral structure, permitting synthesis of full-
length cDNA. 

[39] 

  HIV-1 (SF2) 
Direct virolysis (permeabilization 
of viral envelope) 

Melittin (20–100 μg/mL) was exploited to 
permeabilize HIV-1 envelope. Melittin treatment 
led to a 30% higher endogenous cDNA yield 
compared to Triton X-100. 

[40] 

  HIV-1 (IIIB) 

Viral yield inhibition, treatment 
of HIV-1-infected cells with 
melittin, and western blot 
analysis 

Melittin at 0.5 and 2.5 μg/mL reduced HIV 
infectivity in supernatants of KE37/1 T lymphoma 
cells by ≤ 40% and 100%, respectively. Compared 
to untreated cells, expression of a 31 kDa protein 
was reduced in melittin-treated cell extracts. 

[41] 

  HIV-1 (IIIB) and 
HIV-1 (RF) 

Treatment of infected cells with 
melittin, quantitative RT–PCR 
analysis, assessment of HIV LTR 

Melittin dose-dependently inhibited virus 
production in T lymphoma or fibroblastoid cells 
infected with HIV-1. Melittin treatment of T cells 

[42] 
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Family/virus 
(strain) 

Methods Results References 

activity, and western blot 
analysis 

diminished levels of Gag antigen, viral mRNA, 
and HIV LTR activity. 

  HIV-1 (NLHX) and 
HIV-1 (NLYU2) 

Virucidal assay (measuring 
luciferase activity) and HIV-1 
capture assay (measuring total 
amount of viral protein p24 by 
ELISA) 

Both free melittin and melittin-loaded 
nanoparticles reduced HIV-1 infectivity. Melittin-
loaded nanoparticles captured more HIV-1 
compared to blank nanoparticles. 

[43] 

Virgaviridae 

  TMV (U1) 

Virucidal assay (determining 
percentage of local lesions on 
tobacco leaves), bond-shift assay, 
and circular dichroism 
measurements 

Melittin diminished infectivity of TMV and 
induced conformational changes in TMV RNA. 

[44] 

1. BoHV-1 bovine herpesvirus type 1, ELISA enzyme-linked immunosorbent assay, EV-71 enterovirus 71, GFP-fused 
influenza A green fluorescent protein-fused influenza A (A/PuertoRico/8/34) (H1N1), HIV-1 human 
immunodeficiency virus-1, HSV-1 herpes simplex virus 1, LTR long terminal repeat, MuLV Rauscher murine leukemia 
virus, RAV-2 Rous associated virus-2, RSV respiratory syncytial virus, RT-PCR quantitative reverse transcriptase-
polymerase chain reaction, TMV tobacco mosaic virus, VHSV fish viral hemorrhagic septicemia rhabdovirus, VSV 
vesicular stomatitis virus 

Table 2 Anti-viral activities, cytotoxicity effects, and selectivity indices of melittin 

Family/virus (strain) EC50 ± SD Cells CC50 ± SD SI References 

Arenaviridae 

  Junín virus (IV4454) 0.86 μM Vero 8.51 μM 9.89 [32] 

Flaviviridae 

  Bovine viral diarrhea virus 
(NADL) 

ND MDCK 2.32 μg/mL ND [33] 

Herpesviridae 

  HSV-1 (F) 1.35 μM Vero 8.51 μM 6.30 [32] 

  HSV-2 (G) 2.05 μM Vero 8.51 μM 4.15 [32] 

  GFP-fused HSV 0.94 ± 0.07 μg/mL Vero 6.23 ± 0.07 μg/mL 6.62 [36] 

Orthomyxoviridae 

  GFP-fused influenza A (PR8) 1.15 ± 0.09 μg/mL MDCK 7.66 ± 0.94 μg/mL 6.66 [36] 

Picornaviridae 

  EV-71 0.76 ± 0.03 μg/mL HeLa 4.36 ± 0.54 μg/mL 5.73 [36] 

  GFP-fused coxsakievirus (H3) 0.99 ± 0.09 μg/mL HeLa 4.36 ± 0.54 μg/mL 4.40 [36] 

Pneumoviridae 

  GFP-fused RSV 0.35 ± 0.08 μg/mL HEp2 5.02 ± 0.17 μg/mL 14.34 [36] 

Rhabdoviridae 

  GFP-fused VSV 1.18 ± 0.09 μg/mL Vero 6.23 ± 0.07 μg/mL 5.27 [36] 

Retroviridae 

  HIV-1 (NLHX) 2.4 μM 
Vaginal epithelial cells 
(VK2) 

ND ND [43] 

  HIV-1 (NLYU2) 3.6 μM 
Vaginal epithelial cells 
(VK2) 

ND ND [43] 
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1. BoHV-1 bovine herpesvirus type 1, CC50 melittin concentration needed to lessen cell viability by 50%, EC50 melittin 
concentration required to decrease virus yield by 50%, EV-71 enterovirus 71, GFP-fused influenza A green 
fluorescent protein-fused influenza A (A/PuertoRico/8/34) (H1N1), HIV-1 human immunodeficiency virus-1, HSV-1 
herpes simplex virus 1, ND not determined, MDCK Madin–Darby canine kidney, RSV respiratory syncytial virus, SD 
standard deviation, SI selectivity index (CC50/EC50) 

Arenaviridae  

The family Arenaviridae encompasses enveloped viruses with two single stranded, ambisense RNA molecules, and is 
usually associated with rodent-transmitted infections in human beings [45, 46]. The family comprises three newly 
separated genera including Mammarenavirus, Reptarenavirus, and Hartmanivirus. Both Reptarenavirus and 
Hartmanivirus infect reptilian hosts, whereas Mammarenavirus infects mammalian hosts [47]. On the basis of 
serological cross-reactions, genetic, and geographic relationships, the genus Mammarenavirus is further subdivided 
into two major serogroups: The New World and the Old World [45, 47]. Noticeably, some Old World (Lassa and Lujo) 
and New World (Chapare, Guanarito, Junín, Machupo, and Sabia) arenaviruses are responsible for viral hemorrhagic 
fever, one of the most devastating emergent human diseases, with a fatality rate of 15–30% in untreated cases [48, 
49]. For instance, Junín virus (JV) causes Argentine hemorrhagic fever, a severe viral illness endemic to the humid 
pampas of Argentina, with roughly five million people at risk [50]. Though ribavirin is the only approved anti-viral agent 
for treating arenaviruses in the USA; however, it exhibits undesirable secondary reactions [32, 51]. Thus, there is 
exigency to develop efficient therapeutics against arenaviruses. 

Melittin has been shown to cripple JV multiplication at non-toxic concentration ranges (0.5–3 μM) in vitro [32]. 
Surprisingly, 3 μM of melittin was enough to achieve a 99% reduction of JV infectivity (Table 1). Melittin concentration 
required to decrease virus yield by 50%, known as EC50, was 0.86 μM for JV (Table 2). Based on 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, concentration of melittin needed to lessen cell viability by 50% 
(CC50) was 8.51 μM. Besides, selectivity index (CC50/EC50) of melittin was 9.89, suggesting that it can serve as a 
conceivable drug for anti-viral therapy against JV [32]. 

Flaviviridae  

The Flaviviridae is a family of arthropod-borne, enveloped viruses with a single-strand RNA of positive polarity, and 
currently has four genera, namely Flavivirus, Pestivirus, Hepacivirus, and Pegivirus. They frequently infect mammals 
and birds, causing wide range of diseases such as hepatitis, hemorrhagic fever, fatal mucosal disease, and neurological 
illnesses [52]. Some notable examples of the family are hepatitis C virus, yellow fever virus, West Nile virus, dengue 
virus, Japanese encephalitis virus, and Zika virus, representing a severe global public health problem with major 
socioeconomic consequences [53]. 

Very recently, Picoli et al. investigated anti-viral effects of melittin on bovine viral diarrhea virus (BVDV) [33], the 
causative agent of bovine viral diarrhea which leads to considerable financial losses in many beef-exporting countries 
[54]. Melittin had no satisfactory anti-viral activity against BVDV, before and after infection of Madin–Darby bovine 
kidney cells with the virus (multiplicity of infection; MOI = 0.1). Intriguingly, combinations of melittin with bee venom-
derived apamin were superior against BVDV than each agent alone, highlighting that apamin potentiates anti-BVDV 
efficacy of melittin [33]. Based on these findings, it is sensible to combine melittin with other available anti-viral drugs 
to ascertain whether the new combinations can abolish Flavivirus infectivity. 

Herpesviridae  

Viruses forming the family Herpesviridae contain double-stranded linear DNA encased within an icosapentahedral 
capsid, which is wrapped in a tegument and a lipid envelope [55]. Among more than hundred known herpes viruses, 
nine infect humans including herpes simplex virus 1 (HSV-1), HSV-2, varicella zoster virus (VZV), cytomegalovirus 
(CMV), human herpes virus (HHV)-6A, HHV-6B, HHV-7, Epstein-Barr virus (EBV), and Kaposi’s sarcoma-associated 
herpesvirus (KSHV/HHV-8) [56]. Unquestionably, herpes simplex viruses are one of the most pervasive pathogens 
among humans, afflicting up to 95% of the adult population worldwide [57, 58]. Clinical manifestations range from 
benign and generally self-limiting forms including cold sores and genital herpes to the rare but severe and sometimes 
even life-menacing infections such as herpes encephalitis. Acyclovir (ACV) and related nucleoside analogues have been 
successfully employed in treating HSV infections, but the treatment should be commenced as soon as possible after 

https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR45
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR46
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR47
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR45
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR47
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR48
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR49
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR50
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR32
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR51
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR32
https://link.springer.com/article/10.1007/s10096-019-03674-0#Tab1
https://link.springer.com/article/10.1007/s10096-019-03674-0#Tab2
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR32
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR52
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR53
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR33
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR54
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR33
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR55
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR56
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR57
https://link.springer.com/article/10.1007/s10096-019-03674-0#ref-CR58


6 
 

onset of symptoms. Furthermore, efficiency of the current anti-HSV drugs is generally limited and gives rise to only 
marginal improvements in lesion healing time or episode duration [59]. For this reason, there is room for more 
efficacious therapies. 

HSV entrance into cells occurs following fusion of viral envelope with host cell membrane. Several glycoproteins are 
involved in HSV-induced cell fusion [60]. It is worth mentioning that wild-type HSV-1 strains usually induce a limited 
amount of cell fusion, while certain HSV mutants known as syn mutants lead to extensive syncytium formation [61]. 
Disturbance of trans-membrane ion gradients impedes HSV-1-induced cell fusion [62]. This fact together with 
perturbation effects of melittin on Na+, K+ pump [63] propelled researchers to explore whether melittin influences 
HSV-1-induced cell fusion [34]. Fusion of Vero cells infected with HSV strains (MP, syn20, and FFV3) harboring the syn1 
mutation in glycoprotein K was inhibited in the presence of melittin (0.5 μM), with no evidence of cytotoxicity toward 
Vero cells (Table 1). By contrast, melittin (0.5 μM) failed to affect cell fusion induced by HSV strains containing 
mutations in glycoprotein B (tsB5 and amb 1511–7). In presence of melittin, binding of ouabain (a specific inhibitor of 
the Na+, K+ ATPase) to the Na+, K+ pump of HSV-1-infected Vero cells was drastically diminished. The peptide also 
reduced HSV-1 yield in Vero cells compared to untreated control. In addition, the authors found that melittin is able 
to obstruct HSV-1 attachment onto Vero cells in a dose-dependent manner and to hinder HSV-1 penetration into cells 
[34]. 

Melittin has been demonstrated to exert marked anti-herpetic activity against HSV-1 M and HSV-2 G [35]. However, 
melittin at concentration of 100 μg/mL displayed 99.9 ± 0.2% cytotoxicity towards ME-180 human cervical carcinoma 
cells. Similarly, an extensive hemolysis (94.6%) occurred at concentration of 80 μg/mL [35]. It has been also evinced 
that 3 μM of melittin curbed in vitro infectivity of both HSV-1 and HSV-2 by 80%. Incubation of Vero cell with melittin 
(> 5 μM) at 37 °C for 24 h resulted in cell rounding and monolayer detachment, as manifested by light microscopy [32]. 
Selectivity index of melittin was calculated to be 6.30 and 4.15 for HSV-1 and HSV-2, respectively (Table 2). In another 
major study, Uddin et al. found that melittin directly inhibits Green Fluorescent Protein (GFP)-fused HSV (EC50 of 
0.94 ± 0.07 μg/mL) [36], which corroborates the findings of the earlier investigations [32, 34, 35]. Compared to 
untreated viruses, melittin treatment of GFP-HSV minimized not only GFP expression in infected cells but also viral 
titers (16-fold). 

A new investigation [33] revealed the potential anti-viral effects of melittin on bovine herpesvirus type 1 (BoHV-1, Los 
Angeles strain). Administration of melittin (2 μg/mL) on Madin–Darby bovine kidney cells before and after infection 
with BoHV-1 (MOI = 0.1) resulted in marked reduction of viral titers. In light of virucidal kinetics, complete obliteration 
of BoHV-1 was achieved after a 2-h incubation of the virus with 25 μg/mL of melittin at 37 °C [33], implying rapid anti-
viral effects of melittin. Given that melittin curtails the infectivity of HSV in several ways, it is imperative to evaluate 
its anti-viral effectiveness against other members of Herpesviridae as well. 

Orthomyxoviridae  

The family Orthomyxoviridae comprises enveloped viruses with negative sense, segmented, single-stranded RNA, and 
includes seven genera: Influenzavirus A, Influenzavirus B, Influenzavirus C, Influenzavirus D, Isavirus, Quaranjavirus, 
and Thogotovirus [46, 64]. Influenza viruses are the most prominent member of this family [65]. WHO has been 
estimated that influenza-mediated debilitating respiratory ailments occur in 3 to 5 million people annually, of whom 
roughly 290,000 to 650,000 succumb to influenza-related illnesses [66]. Influenza A viruses are further subtyped on 
the basis of two main antigenic determinants named hemagglutinin (HA; H1–H16) and neuraminidase (NA; N1–N9) 
[67]. High genetic variation rates of influenza viruses due to mutation, reassortment, and/or recombination together 
with the lack of effective anti-influenza agents underscore the necessity of developing novel anti-viral drugs [68]. 

Melittin is able to mitigate infectivity of influenza A virus [36]. In this regard, 1.15 ± 0.09 μg/mL of melittin was 
sufficient for 50% reduction in plaque-forming units (PFUs) of GFP-fused influenza A (H1N1, PR8-GFP). Furthermore, 
CC50 of melittin was 7.66 ± 0.94 μg/mL for Madin–Darby canine kidney cells. Considering both anti-viral and cytotoxic 
activities, selectivity index of melittin was 6.66 (Table 2), inferring that anti-influenza activity of melittin does not 
emanate from cytotoxic effect of the peptide [36]. In initial stages of infection, melittin (2 μg/mL) did not interfere 
with both cell attachment and entry of PR8-GFP strain. When PR8-GFP strain was co-incubated with melittin (for 30 min 
at 4 °C), waning in viral mass was observed, as evaluated by velocity sedimentation ultracentrifugation and subsequent 
immunoblotting [36]. At 24 h post-infection, melittin treatment (2 μg/mL, 30 min) of PR8-GFP led to significant 
reduction in viral titers (5-fold, P < 0.01) and GFP expression compared to untreated PR8-GFP. These data suggest direct 
effect of melittin on PR8-GFP surface, prior to virus-cell attachment. Li et al. postulated that surface charge interactions 
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between a cationic peptide from scorpion venom named Mucroporin-M1 and influenza H5N1 can diminish viral 
infectivity [68]. Thus, melittin may interact with phospholipid bilayer of viral envelope through electrostatic 
interactions and destabilize viral particles, eventually leading to virolysis. 

Picornaviridae  

All of the Picornaviridae members have single-stranded positive sense RNA genome with a non-enveloped icosahedral 
capsid [65]. As one of the largest viral families, it currently has 35 genera including 80 species. These viruses cause a 
wide variety of maladies involving respiratory and gastrointestinal tracts, central nervous system, heart, liver, skin, and 
eye [69]. 

One study [36] demonstrated the anti-viral effects of melittin against enterovirus 71 (EV-71), one of the chief culprits 
behind the hand, foot, and mouth disease, which can lead to neurological, cardiac, and respiratory complications in 
young children [70]. Melittin/EV-71-treated cells exhibited lower cytopathic effects (CPEs) and higher cellular viability 
than those of EV-71-infected cells. Furthermore, mRNA expression levels of capsid protein VP1 in melittin/EV-71-
treated cells displayed a 4-fold decrement compared to EV-71-infected cells (Table 1). As evidenced in Table 2, EC50 
and CC50 of melittin for EV-71 and HeLa were 0.76 ± 0.03 and 4.36 ± 0.54 μg/mL, respectively, resulting in selectivity 
index of 5.73. These observations confirmed the inhibitory effects of melittin on either EV-71 replication or CPE 
induction, making the peptide an attractive candidate for prophylactic or therapeutic use against enterovirus infections 
[36]. 

Uddin et al. [36] also found that melittin suppresses infectivity of GFP-fused coxsackievirus H3 (cardiopathogenic H3 
strain of coxsackievirus B3) with EC50 of 0.99 ± 0.09 μg/mL. Moreover, CC50 of melittin for HEp-2 cells was 
4.36 ± 0.54 μg/mL. Selectivity index of melittin was also calculated to be 4.40. Co-incubation of H3-GFP (MOI = 2) with 
2 μg/mL of melittin for 30 min at 4 °C and subsequent inoculation of the mixture to HeLa cells resulted in 5-fold 
(P < 0.05) and 1.5-fold (P < 0.05) reduction in viral titers and GFP expression, respectively, compared to H3-GFP-
infected cells not subjected to melittin treatment. Indeed, these findings imply that melittin has pronounced virucidal 
activity against coxsackievirus at non-cytotoxic concentrations. 

Pneumoviridae  

The family Pneumoviridae contains enveloped viruses with single-stranded, negative-sense RNA, and has two genera, 
Orthopneumovirus and Metapneumovirus [65]. The genus Metapneumovirus has two species (Avian metapneumovirus 
and Human metapneumovirus), while Orthopneumovirus contains three species (Bovine respiratory syncytial virus, 
Human respiratory syncytial virus, and Murine pneumonia virus) [71]. Human respiratory syncytial virus (RSV) is a major 
etiological agent of respiratory diseases such as pneumonia and bronchiolitis, particularly in children, elderly, and 
immunocompromized patients [72]. Worldwide, around 33.8 million new cases of RSV-associated acute lower 
respiratory infection are estimated to occur in children under the ages of 5 years annually, of whom at least 3.4 million 
required hospitalizations [73, 74]. Despite the magnitude of RSV disease, treatment has been limited to supportive 
measures, bronchodilators, epinephrine, and ribavirin [75]. 

Melittin has the ability to extinguish RSV infectivity [36]. Compared to RSV-infected HEp-2 cells without melittin 
treatment, incubation of GFP-RSV with 2 μg/mL of melittin for 30 min at 4 °C and subsequent inoculation of the mixture 
to HEp-2 cells (MOI of 1) caused significant decrements in GFP expression (P < 0.01) and viral supernatant titers (82-
fold, P < 0.01) at 24 h post-infection (Table 1). EC50 and CC50 toward RSV-GFP and HEp-2 cells were 0.35 ± 0.08 and 
5.02 ± 0.17 μg/mL, respectively (Table 2). Given that melittin displayed higher level of selectivity toward RSV over HEp-
2 cells (selectivity index of 14.34), the peptide can be considered as an auspicious agent for anti-RSV therapy. 

Retroviridae  

Retroviruses are enveloped viruses with two copies of positive-sense RNA which use their own reverse transcriptase 
(RT) to generate DNA from its RNA genome [65]. Viruses belonging to Retroviridae are responsible for economically 
devastating diseases ranging from malignancies to immune deficiencies and neurologic disorders. HIV, which is 
historically related to the AIDS pandemic, is categorized under the genus Lentivirus within the family of Retroviridae. 
Thus far, six therapeutic classes of anti-retroviral drugs are available for the management of HIV infection including 
entry or fusion inhibitors, nucleoside/nucleotide analogue reverse-transcriptase inhibitors (NRTIs/NtRIs), non-
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nucleoside reverse transcriptase inhibitors (NNRTIs), integrase inhibitors, and protease inhibitors [76]. Although anti-
retroviral combination therapy enhances life expectancy substantially, there is still no cure for AIDS. In fact, all HIV 
cure approaches are generally in their infancy [65]. 

There are several lines of evidence concerning anti-retroviral activities of melittin against different retroviruses (Table 
1). The first investigation on anti-viral efficacy of melittin dates back to the late 1970s, when Esser et al. appraised 
direct virolytic effect of melittin toward Rauscher murine leukemia virus (MuLV). The authors demonstrated that 50 μg 
of melittin is enough to “peel off” the viral envelope [38]. As an alternative to non-ionic detergent NP-40, melittin can 
permeabilize avian retrovirus envelope for cDNA synthesis [39], confirming an earlier finding reported by Esser et al. 
[38]. Permeabilization of HIV-1 envelope for synthesis of cDNA is further exemplified in a study conducted by Yong et 
al. [40]. 

Melittin can also minimize production of HIV-1 in persistently HIV-1-infected KE37/1 T lymphoma cells [41]. In this 
context, complete reduction of viral particles in supernatants of HIV-1-infected cells was observed after applying of 
melittin at a non-cytotoxic concentration of 2.5 μg/mL. Western blot analysis demonstrated the reduction of a 31 kDa 
protein in melittin-treated cell extracts [41]. This protein could relate to some fragments of processed Gag/Pol 
precursor polyprotein or p31 integrase. Furthermore, data retrieved from C-terminal and truncated derivatives of 
melittin suggest that both amphipathic alpha-helical part (residues 1–20) and cationic amino acid residues in the C-
terminal end of melittin are accounted for its anti-viral properties against HIV-1, resulting in intracellular impairment 
of viral protein production rather than a direct disruption of viral envelope [41]. 

Another survey proved the anti-HIV effectiveness of melittin at non-cytotoxic concentrations [42]. In this respect, 
melittin attenuated HIV-1 production in HUT78-RF (chronically HIV-1-infected T cells), HUT78 (acutely HIV-1-infected 
T cells), and LC5-CD4 (acutely HIV-1-infected fibroblasts) in a dose-dependent manner. In the case of melittin-treated 
cells, metabolic activity at the 50% infectious dose (ID50) was higher than 85% of control cultures. Furthermore, western 
blot analysis indicated that levels of Gag antigen declined in KE37/1 (acutely HIV-1-infected T lymphoma cells) lysates 
following 9 days treatment with melittin (1.05 and 1.4 μM) compared to controls [42]. Quantitative reverse 
transcriptase-polymerase chain reaction (RT-PCR) results also demonstrated that melittin does not suppress 
expression of porphobilinogen deaminase, a cellular housekeeping gene. Interestingly, melittin suppresses HIV long 
terminal repeat (LTR) activity in a Tat-independent manner, indicating that melittin interferes with host cell-directed 
viral gene expression [42]. All the cumulative evidence indicates that dose-dependent anti-HIV effect of melittin is 
mediated by suppressing HIV transcription and decreasing overall levels of viral gene products rather than the lysis of 
cellular or viral membranes. 

Hood et al. reported the first proof-of-concept investigation concerning inhibition of HIV-1 infectivity by melittin-
loaded nanocarriers [43]. In order to quantify HIV-1 infectivity, the authors applied TZM-bl cell line, which is HeLa-
derived cells capable of expressing CD4, CCR5, and CXCR4. The cell line also harbors luciferase reporter gene under the 
control of an HIV-1 promoter [77]. After incubation of 50 ng HIV-1 NLHX (CXCR4 tropic) or HIV-1 NLYU2 (CCR5 tropic) 
strains with soluble CD4 (served as a positive control), nanoparticles, and free melittin at 37 °C, treated viruses were 
exploited to infect TZM-bl reporter cells for 48 h at 37 °C. This is followed by lysing the cells and gauging luciferase 
activity (as a measurement of HIV-1 infectivity). Remarkably, free melittin at concentrations greater than 6 μM was 
able to extirpate infectivity of both NLHX and NLYU2 strains. Although 2 μM of free melittin did not influenced viability 
of TZM-bl reporter cells, concentrations above 2 μM rapidly diminished cellular viability, indicating a narrow 
therapeutic range of melittin. Contrary to free melittin, melittin-loaded nanoparticles had no toxicity toward vaginal 
keratinocytes in vitro [43]. Besides, 50% inhibitory concentration of melittin-loaded nanoparticles were 2.4 and 3.6 μM 
against NLHX and NLYU2 strains, respectively, with no adverse effects on reporter cell viability. Lipid-to-lipid membrane 
hemi-fusion events may facilitate melittin transportation from nanoparticle lipid monolayers to HIV-1 envelope 
bilayers, subsequently resulting in melittin aggregation, pore formation, and deactivation of viral packaging [43]. 
Simplicity of nanoparticle production, lack of melittin nanoparticles toxicity against vaginal keratinocytes, and their 
potential in reducing HIV-1 infectivity are striking properties of this approach for intra-vaginal prevention of HIV 
transmission. 

Rhabdoviridae  

Members of Rhabdoviridae have characteristic bullet-shaped or bacilliform membrane-enveloped particles with single-
stranded, negative-sense RNA. Viruses belonging to Rhabdoviridae afflict an extremely broad range of hosts including 
plants, fish, mammals, reptiles, and even invertebrates [65]. Vesicular stomatitis virus (VSV) is an arthropod-borne 
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Rhabdovirus that cause vesicular disease in cattle, horses, and swine, leading to negative economic impacts on animal 
husbandry [78, 79]. 

One study was performed in an attempt to appraise anti-viral effects of melittin on VSV in vitro [36]. In this respect, 
melittin (0.5–10 μg/mL) was co-incubated with VSV-GFP for 30 min at 4 °C, after which viral suspensions with MOI of 
0.2 were inoculated to Vero cells. Melittin displayed EC50 value of 1.18 ± 0.09 μg/mL against VSV-GFP, while it showed 
CC50 of 6.23 ± 0.07 μg/mL toward Vero cells, resulting in selectivity index of 5.27 [36]. Incubation of melittin (2 μg/mL) 
with VSV-GFP at 4 °C for 30 min and subsequent inoculation to Vero cells caused a discernible depletion of GFP 
expression at 24 h post-infection, while high levels of GFP expression was observed in virus-infected groups without 
melittin treatment, as disclosed through fluorescence microscopy. In comparison to virus-infected groups, a 
pronounced decline in viral titer of VSV-GFP (1598-fold, P < 0.01) was observed following a 30 min of exposure to 
melittin. Moreover, VSV-GFP infectivity to HEK293T cells began to reduce after a 5-min incubation with melittin 
(2 μg/mL) and continued to wane during 10, 20, and 30 min, indicating rapid virucidal kinetics of melittin [36]. 

Delivery of biochemical compounds by immunoliposomes encompassing complete or fragmented antibodies 
represents an optimistic strategy for coping with cancers and viral infections [80]. In an effort to construct and to 
evaluate anti-microbial peptide (AMP)-loaded immunoliposome system, Falco et al. incorporated melittin into 
immunoliposomes containing antibodies against glycoprotein G of fish viral hemorrhagic septicemia rhabdovirus 
(VHSV), a rhabdovirus infecting cold-blooded aquatic creatures [37]. At concentrations equivalent to 25 and 50 μM, 
both melittin-loaded liposomes and immunoliposomes were capable of inhibiting VHSV-infected cell foci formation in 
a dose- and time-dependent manner. For instance, inhibition rates of VHSV infectivity were 89.9% and 95.2% in the 
presence of melittin-loaded liposomes (50 μM) and immunoliposomes (50 μM), respectively. Both melittin-loaded 
liposomes and immunoliposomes interdicted the infectivity of VHSV after virus adsorption to fish cell line epithelioma 
papulosum cyprini (EPC) at time point 0 and 4 h post-infection [37]. In addition, EPC cell monolayers exhibited > 80% 
viability after a 24-h exposure to melittin-loaded liposomes (25 μM) and immunoliposomes (50 μM) at 14 °C. These 
findings suggest that AMP-loaded immunoliposomes might have an enormous potential to prevent or treat viral 
infections as the configuration of their constituents (i.e., AMP type, antibody fragments, and/or phospholipid 
composition) can be optimized. 

Virgaviridae  

Virgaviridae is a family of plant-associated viruses with rod-shaped virions and single-stranded, positive-sense RNA 
genome [81]. As a typical member of Virgaviridae, tobacco mosaic virus (TMV) had a long and illustrious history since 
the late nineteenth century. The virus invades a wide spectrum of plants, in particular genera belonging to Solanaceae 
[82]. 

Amino acid sequences of melittin and coat protein of tobacco mosaic virus (TMV) at positions 71–94, which are known 
to be pivotal for protein-RNA and protein-protein interactions, exhibit partial resemblance. Based on this similarity, an 
investigation was conducted by Marcos et al. to decipher whether melittin abrogates TMV infectivity and interacts 
with the viral particles and their RNA genomes [44]. Addition of melittin (5 μM) into a solution containing TMV led to 
reduction (10%) in number of necrotic local lesions on tobacco leaves compared to non-treated samples. As inferred 
from far-ultraviolet circular dichroism (CD) spectroscopy, melittin adopted a random coil and alpha-helical 
conformations in the absence and presence of TMV RNA, respectively. When combined with 5 μM of melittin, TMV 
RNA showed not only a significant enhancement in electrophoretic mobility but also shifts in CD spectrum, suggesting 
RNA conformational changes are induced by melittin [44]. In general, these findings open up a range of new 
applications for melittin in the field of plant and agricultural virology. 

In vivo studies 

Apart from in vitro investigations, some empirical evidences exist with regard to anti-viral efficiency of melittin in 
animal models. For instance, co-incubation of melittin (100 ng) with 5MLD50 (dose lethal to 50% of mice) of influenza 
A virus subtype H1N1 for 30 min and subsequent intranasal administration of the mixture resulted in 100% survivability 
of six-week-old C57BL/6 female mice up to 8 days post-infection (dpi), whereas all phosphate-buffered saline 
(PBS)/H1N1-treated mice displayed several respiratory disease symptoms and perished at 8 dpi. Unlike PBS/H1N1-
treated mice, melittin/H1N1-treated mice were protected from body weight loss. Since melittin/H1N1-treated mice 
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exhibited considerably lower lung viral titer in comparison to PBS/H1N1 treated mice at 5 dpi, melittin rescued them 
from lethal infections of influenza A [36]. 

The effectiveness of melittin for the treatment of influenza-infected chicken embryos has been exemplified in a report 
by Michálek et al. [83]. In this regard, influenza A virus subtype H7N7 was inoculated into embryo’s allantois of 9-day-
old specific pathogen-free (SPF) embryonated chicken eggs and incubated for 24 h, after which different 
concentrations of melittin was injected into allantoic fluid. Chicken embryos received only influenza A virus showed 
survival rates of 40%, implicating high pathogenicity of the virus against embryos. By contrast, influenza-infected 
embryos which were inoculated with melittin (0.05, 0.5, and 1 μM) exhibited 80% viability. However, higher 
concentrations of melittin (2 and 4 μM) were toxic for influenza-infected embryos, resulting in survival rates of 40%. 
These experimental data suggest that melittin is well tolerated by chicken embryos for up to 1 μM [83]. On the whole, 
melittin holds promise for a new avenue of anti-influenza therapy, from medicine to husbandry. 

A prospective, placebo-controlled double-blinded trial was conducted to evaluate the effects of subcutaneously 
administrated melittin (500 μg per kg body weight) on the general health status of feline immunodeficiency virus (FIV)-
infected cats and the severity of clinical symptoms during a 6-week treatment period [84]. In contrast to the placebo 
group receiving PBS, treatment with melittin led to a constant improvement in cats’ general health status, expressed 
as Karnofsky’s score. Statistically, a significant difference (P = 0.015) in improvement of conjunctivitis was observed 
between melittin-treated and placebo-treated cats. Although both groups exhibited amelioration of stomatitis, 
however, this was not significant. Moreover, no adverse effects including hemolysis and irritation at the injection site 
in FIV-infected cats were noted [84]. In the case of laboratory parameters (e.g., packed cell volume, hemoglobin, and 
white blood cells), there were no statistically significant differences between both groups. As for immunologic 
parameters including CD4+ lymphocytes, CD8+ lymphocytes, and CD4/CD8 ratio, no significant differences between 
both groups were evident. Similar results were also observed with regard to surrogate parameters (biopterin and 7-
xanthopterin in serum and urine) in both groups. Authors stated that lack of significant changes could be attributable 
to various reasons including inability of melittin to yield strong anti-viral activity in vivo, administration of low dosage 
of melittin, long treatment intervals, short length of treatment period, and development of antibodies against melittin 
[84]. Overall, assessment of changes in FIV load together with increasing the total number of cats should be considered 
for future investigations to provide more trustworthy statistical findings. 

Plausible anti-viral mechanisms 

A better understanding of anti-microbial mechanisms of melittin will definitely help us to optimize anti-viral strategies. 
Many AMPs act primarily through membrane disruption [85]. In this context, direct interaction of melittin with viral 
envelopes or capsid proteins interferes with binding or uptake of viruses by cells [34, 42, 43]. Besides, other plausible 
anti-viral mechanisms of action such as impediment of viral multiplication [36], decreasing expression levels of viral 
mRNAs [36, 42], inducing conformational changes in viral genome [44], deactivation of viral packaging [43], 
attenuation of viral cytopathic effects [36], and inhibition of viral-induced cell fusion [34] have been documented in 
the literature, as depicted in Fig. 1. 
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Fig. 1 

 

Possible inhibitory mechanisms of melittin toward different viruses 

Full size image 

Future prospects 

As hinted above, melittin exerts broad spectrum of anti-viral activities, albeit being relatively cytotoxic at higher doses. 
Multiple approaches can be propounded to diminish cytotoxicity of melittin while augmenting its anti-viral effects, 
thereby heightening therapeutic indices of the peptide. In this regard, targeted in vivo delivery of AMPs like melittin 
through a nanocarrier exemplifies a safe solution with desirable pharmacokinetics for both anti-viral and anti-cancer 
therapies [86, 87]. An alternate novel enticing strategy is conjugation of melittin with aptamers, which are 
oligonucleotide or peptide molecules capable of binding to their targets with high affinity and specificity [88]. Designing 
hydrogels embedded with melittin for topical treatment of herpes blisters and papilloma virus-related warts is the 
other practicable approach which has not been reported hitherto. Last but not least, combination of melittin and 
current anti-viral drugs may reduce both concerns associated with cytotoxicity of melittin and probability of developing 
drug-resistant viruses. 

Conclusions 

Several decades of endeavor have allowed researchers to partially disclose anti-viral effects of melittin against both 
RNA and DNA viruses that fall within diverse viral families. However, tangible challenges such as medication safety lie 
ahead in the path toward clinical application of melittin as an anti-viral drug. As a consequence, future investigations 
may need to focus on deciphering mechanisms behind the anti-viral activity of melittin, examining various routes of 
administrations, and scrutinizing the effectiveness of melittin in primate models to retrieve additional pre-clinical data. 
Undoubtedly, anti-infective properties of melittin will provide new avenues in all fields of clinical researches, 
particularly medical virology. 
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